
Lucas Caracas de Figueiredo

Deep-Learning-Based Shape Matching
Framework on 3D CAD Models

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Informática.

Advisor : Prof. Waldemar Celes Filho
Co-advisor: Dr. Paulo Ivson Netto Santos

Rio de Janeiro
September 2022

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Lucas Caracas de Figueiredo

Deep-Learning-Based Shape Matching
Framework on 3D CAD Models

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Informática. Approved by the Examina-
tion Committee.

Prof. Waldemar Celes Filho
Advisor

Departamento de Informática – PUC-Rio

Dr. Paulo Ivson Netto Santos
Co-advisor

Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Marley Maria Bernardes Rebuzzi Vellasco
Departamento de Engenharia Elétrica – PUC-Rio

Prof. Anselmo Cardoso de Paiva
Departamento de Informática – UFMA

Prof. Manuel Menezes de Oliveira Neto
Instituto de Informática – UFRGS

Rio de Janeiro, September 16th, 2022

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

All rights reserved.

Lucas Caracas de Figueiredo

Lucas Figueiredo received his Bachelor degree in Computer
Science from the Universidade Federal do Maranhão (UFMA)
in 2015. He also received his Master Degree in Computer
Science with emphasis in Computer Graphics from Pontifícia
Universidade Católica do Rio de Janeiro (PUC-Rio) in 2017.

Bibliographic data
Figueiredo, Lucas Caracas de

Deep-Learning-Based Shape Matching Framework on
3D CAD Models / Lucas Caracas de Figueiredo; advisor:
Waldemar Celes Filho; co-advisor: Paulo Ivson Netto Santos. –
Rio de janeiro: PUC-Rio, Departamento de Informática, 2022.

v., 78 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2022.

Inclui bibliografia

1. Informática – Teses. 2. Modelos CAD 3D;. 3. Corre-
spondência de Formas;. 4. Aprendizado Profundo;. 5. Nuvem
de Pontos.. I. Celes Filho, Waldemar. II. Ivson, Paulo. III. Pon-
tifícia Universidade Católica do Rio de Janeiro. Departamento
de Informática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Acknowledgments

First, I would like to thank my family, Severino, Luciana, and Caetano, for
cheering me up and for all the love and support. Without you, I would never
have come this far.
I wish to thank my advisor Waldemar Celes for all the support, guidance,
insightful conversations, and commitment to our research. I feel honored to
have worked with you for all these years.
I wish to thank my friend and co-advisor Paulo Ivson for all the insightful
conversations and commitment to our research. Your support was essential in
the development of this research.
I also would like to thank all my friends and colleagues, especially André,
Wallas, Eduardo, Rafael, Suellen, Rustam, Carol, Thiago, Ruberth, Dayson,
and Dalai. Thanks for sharing your knowledge with me and for inspiring me
through this journey.
My deepest thanks to prof. Thadeu, for welcoming me into the GEDi/Tecgraf,
and giving me the opportunity to grow academically and professionally.
Thanks to all the PUC-Rio professors for all the knowledge shared with me.
Thanks to PUC-Rio and Tecgraf, for the financial assistance and support.
The present work was supported by the CNPq, Conselho Nacional de Desen-
volvimento Científico e Tecnológico - Brasil (process 161142/2017-6).
This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Abstract

Figueiredo, Lucas Caracas de; Celes Filho, Waldemar (Advisor); Iv-
son, Paulo (Co-Advisor). Deep-Learning-Based Shape Matching
Framework on 3D CAD Models. Rio de Janeiro, 2022. 78p. Tese
de doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.
Data-rich 3D CAD models are essential during different life-cycle stages

of engineering projects. Due to the recent popularization of Build Informa-
tion Modeling methodology and the use of Digital Twins for intelligent
manufacturing, the amount of detail, size, and complexity of these models
have significantly increased. Although these models are composed of several
repeated geometries, plant-design software usually does not provide any
instancing information. Previous works have shown that removing redun-
dancy in the representation of 3D CAD models significantly reduces their
storage and memory requirements, whilst facilitating rendering optimiza-
tions. This work proposes a deep-learning-based shape-matching framework
that minimizes a 3D CAD model’s redundant information in this regard.
We rely on recent advances in the deep processing of point clouds, over-
coming drawbacks from previous work, such as heavy dependency on vertex
ordering and topology of triangle meshes. The developed framework uses
uniformly sampled point clouds to identify similarities among meshes in 3D
CAD models and computes an optimal affine transformation matrix to in-
stantiate them. Results on actual 3D CAD models demonstrate the value
of the proposed framework. The developed point-cloud-registration proce-
dure achieves a lower surface error while also performing faster than previ-
ous approaches. The developed supervised-classification approach achieves
equivalent results compared to earlier, limited methods and significantly
outperformed them in a vertex shuffling scenario. We also propose a self-
supervised approach that clusters similar meshes and overcomes the need
for explicitly labeling geometries in the 3D CAD model. This self-supervised
method obtains competitive results when compared to previous approaches,
even outperforming them in certain scenarios.

Keywords
3D CAD Models; Shape Matching; Deep Learning; Point Cloud.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Resumo

Figueiredo, Lucas Caracas de; Celes Filho, Waldemar; Ivson, Paulo.
Arcabouço para Correspondência de Formas baseado em
Aprendizado Profundo em Modelos CAD 3D. Rio de Janeiro,
2022. 78p. Tese de Doutorado – Departamento de Informática, Ponti-
fícia Universidade Católica do Rio de Janeiro.
Modelos CAD 3D ricos em dados são essenciais durante os diferen-

tes estágios do ciclo de vida de projetos de engenharia. Devido à recente
popularização da metodologia Modelagem de Informação da Construção e
do uso de Gêmeos Digitais para a manufatura inteligente, a quantidade de
detalhes, o tamanho, e a complexidade desses modelos aumentaram signifi-
cativamente. Apesar desses modelos serem compostos de várias geometrias
repetidas, os softwares de projeto de plantas geralmente não proveem ne-
nhuma informação de instanciação. Trabalhos anteriores demonstraram que
removendo a redundância na representação dos modelos CAD 3D reduz sig-
nificativamente o armazenamento e requisição de memória deles, ao passo
que facilita otimizações de renderização. Este trabalho propõe um arca-
bouço para correspondência de formas baseado em aprendizado profundo
que minimiza as informações redundantes de um modelo CAD 3D a esse
respeito. Nos apoiamos nos avanços recentes no processamento profundo de
nuvens de pontos, superando desvantagens de trabalhos anteriores, como
a forte dependencia da ordenação dos vértices e topologia das malhas de
triângulos. O arcabouço desenvolvido utiliza nuvens de pontos uniforme-
mente amostradas para identificar similaridades entre malhas em mode-
los CAD 3D e computam uma matriz de transformação afim ótima para
instancia-las. Resultados em modelos CAD 3D reais demonstram o valor
do arcabouço proposto. O procedimento de registro de nuvem de pontos
desenvolvido atinge um erro de superfície menor, ao mesmo tempo que exe-
cuta mais rápido que abordagens anteriores. A abordagem supervisionada
de classificação desenvolvida antinge resultados equivalentes em compara-
ção com métodos limitados anteriores e os superou significativamente num
cenário de embaralhamento de vértices. Propomos também uma abordagem
auto-supervisionada que agrupa malhas semelhantes e supera a necessidade
de rotular explicitamente as geometrias no modelo CAD 3D. Este método
auto-supervisionado obtém resultados competitivos quando comparados às
abordagens anteriores, até mesmo superando-as em determinados cenários.

Palavras-chave
Modelos CAD 3D; Correspondência de Formas; Aprendizado

Profundo; Nuvem de Pontos.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Table of contents

1 Introduction 14
1.1 Objectives 17
1.2 Contributions 18
1.3 Document Organization 19

2 Related Work 21
2.1 Geometric Approaches 21
2.2 Deep Learning-Based Approaches 23

3 Shape Matching Background 25
3.1 Deep Learning on Point Sets 25
3.2 Autoencoders 28
3.3 Clustering 29
3.3.1 K-Means 29
3.3.2 HDBSCAN 31

4 Supervised Shape Instance Matching Framework 35
4.1 Preprocessing 36
4.2 Instance Registration 38
4.3 Experiments 42
4.3.1 Training the PointNet++ 44
4.3.2 Results 46
4.3.2.1 Instance Registration Results 48
4.3.2.2 Rendering Performance 49
4.3.2.3 Results Using Another CAD model 50
4.3.3 Discussion 51

5 Self-Supervised Shape Instance Matching Framework 54
5.1 Experiments 57
5.1.1 Training the Autoencoder 58
5.1.2 Results 60
5.1.2.1 Results in the labeled dataset 61
5.1.2.2 Results in the unlabeled dataset 62
5.1.2.3 Rendering performance 65
5.1.3 Discussion 66

6 Conclusions 68
6.1 Future Work 69

Bibliography 71

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

List of figures

Figure 1.1 In (a), we illustrate an example of a 3D CAD model
containing 8,933,975 geometries, and almost half of them are
represented as triangle meshes. In (b) and (c), we observe
visual structures that are composed of many triangle meshes,
highlighted in blue, green, red, and pink, increasing the level of
detail and complexity of the CAD model. 15

Figure 3.1 Example of earlier approaches to process point clouds. 26
Figure 3.2 The PointNet architecture. First, point and feature

transformations are applied to the input point cloud, then, the
max pooling symmetric function is used to aggregate the point
features. The classification network relies on the global feature
vector to compute scores for k classes. The segmentation net-
work concatenates the global feature vector with local features
to compute per-point scores. Image adapted from Qi et al., 2017a. 27

Figure 3.3 The PointNet++ architecture, which is composed of set
abstraction layers that recursively sample, group, and obtain
local features using the PointNet (Qi et al., 2017a). The clas-
sification network relies on the final feature vector to compute
scores for k classes. The segmentation network recursively inter-
polates the feature values, concatenate with skip linked feature,
and uses a unit PointNet, which adjusts the feature size, to
compute per point scores. Image adapted from Qi et al., 2017b. 27

Figure 3.4 Example of an autoencoder for point clouds. The en-
coder receives an input point cloud and produces a compressed
representation of it, while the decoder uses this compressed rep-
resentation to reconstruct the input point cloud. 28

Figure 3.5 Example of a dataset to be clustered using the HDB-
SCAN and the computed MST using mpts = 2. 32

Figure 3.6 Visualization of the HDBSCAN hierarchy of the example
in Figure 3.5b as a dendrogram. 32

Figure 3.7 Visualization of the condensed HDBSCAN hierarchy of
the example in Figure 3.5. 33

Figure 3.8 Cluster selection of the example in Figure 3.5. Although
there exists a horizontal cut that could be used to select these
clusters, this is not a limitation of the HDBSCAN algorithm,
which, using the clusters stability to select them, can choose
clusters that are in different positions in the condensed HDB-
SCAN hierarchy. 34

Figure 4.1 Overview of the proposed supervised framework, which
is composed of three main steps: the preprocessing, the classifi-
cation and the instance registration. 36

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Figure 4.2 Example of input to the instance registration step. The
blue cylinder represents the reference mesh (source), and the
purple one the input normalized triangle mesh (target). The
main objective is to estimate a matrix that transforms the source
mesh into the target one. Although the meshes may look the
same, this process is still required, since they are aligned on
different axis. 38

Figure 4.3 Scheme of the outer loop taking as input S and T , as
the blue and purple meshes, respectively. On the sampling step,
PS and PT are obtained with density equal to NP , and used
as input to the inner loop. After the inner loop finishes, the
interruption conditions are verified, continuing the iterations if
none of them was satisfied. 39

Figure 4.4 Scheme of the inner loop registration procedure taking
as input PS transformed by M and PT. The computed dCH

is used as cost function by the Adam optimizer to compute
the gradients and update M . The optimization procedure is
interrupted when the number of iterations is finished or when
the cost function does not decrease for ITi/2 iterations, which
is a heuristic used to prevent excessive computational time on
an optimization that is not improving the cost function. 40

Figure 4.5 Real-world 3D CAD model used as dataset to evaluate
the proposed supervised framework. The model is color-coded
according to each mesh reference type. 43

Figure 4.6 Visualization of the normalized reference meshes for each
of the 16 reference types found on the dataset. These reference
meshes represent cylinder, box, semi-sphere, cones, and circular
toroids with different attributes proportions. 43

Figure 4.7 Frequency of each reference type found in the dataset. 44
Figure 4.8 Optimized CAD model obtained using the proposed

supervised framework. The optimized model has only 2.61% of
the original model size, and has a MeanEs = 0.0003, with a
StdEs = 0.0009. The model is color-coded according to each
mesh reference type. 47

Figure 4.9 3D CAD model with 74549 unlabeled triangle meshes. 50
Figure 4.10 Example of a rectangular toroid misclassified as a circular

toroid due to the lack of similarity between the input triangle
mesh and the reference meshes. This instance is rejected by the
framework, since the surface error is greater than 5e− 3. 51

Figure 5.1 Overview of the proposed self-supervised framework, in
which the classification was replaced with an self-supervised
clustering step. 54

Figure 5.2 Visualization of the autoencoder based on the PointNet++. 55
Figure 5.3 Example of a missing doorway, with the original model

in gray and the optimized in green. The plane with the doorway
is the target, and is covered by the plane that does not have the
doorway, but not the other way around. 57

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Figure 5.4 Visualization of the 3D CAD models found in the unla-
beled dataset. 59

Figure 5.5 Example of complex triangle meshes (not parametric
surfaces) found in the unlabeled dataset. The triangle meshes
are highlighted in blue and green. 60

Figure 5.6 Second half of the unlabeled dataset’s Model 2. In
(b), the accepted meshes are green, and the rejected ones are
red. We can observe that, using the new validation metrics,
the asymmetric errors were avoided, and the doorway was
maintained in the final optimized model. 61

Figure 5.7 Test set of the labeled dataset. In (b), the accepted
meshes are green, and the rejected ones are red. 61

Figure 5.8 Second half of the unlabeled dataset’s Model 1. In (b),
the accepted meshes are green, and the rejected ones are red. 63

Figure 5.9 Second half of the unlabeled dataset’s Model 3, 4, and
5. In (b), (d), and (f), the accepted meshes are green, and the
rejected ones are red. 64

Figure 5.10 Example of some complex geometries that we were able
to optimize with the self-supervised framework. In (a) and (c),
the input triangle meshes are highlighted in green and blue. In
(b) and (d), we observe that the corresponding instance mesh
was optimized and accepted (green) by the last validation step. 65

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

List of tables

Table 4.1 Number of triangle meshes of each reference type in the
validation set. 45

Table 4.2 Confusion matrix of the classification results on the test
set, with the rows being the ground truth reference type and the
columns the predicted reference types. The zeros were omitted
to improve clarity. 46

Table 4.3 Performance comparison of the supervised framework
using different registration approaches: the SICP, the SICP
with our instance registration optimization loops, the Adam
optimizer with dCH , and the proposed instance registration
(IR). These results demonstrate that the proposed instance
registration procedure, with less computational time, obtains
meshes with greater quality, in a more consistent way, which
translates into a better overall memory reduction. Note that
meshes with Es > 0.001 also have Es > 0.005. 49

Table 4.4 Optimization results obtained initializing the instancing
matrix using the identity matrix, a random matrix, and the
PCAINIT matrix. These results demonstrate that the PCA
initialization strategy greatly improved the final mesh quality,
decreasing both MeanEs and StdEs, while also decreasing the
average time spent on each triangle mesh. 53

Table 5.1 Comparison of the memory reduction between the self-
supervised framework with HDBSCAN and K-Means|| and the
Santos & Celes Filho, 2014, approach. 63

Table 5.2 Comparison of the number of clusters obtained on each
model between the HDBSCAN and K-Means|| clustering algo-
rithms. 65

Table 5.3 Comparison of rendering performance between the op-
timized models by the self-supervised framework with HDB-
SCAN and K-Means|| clustering algorithms. The total number
of meshes in the optimized model is the combination of the refer-
ence meshes and the unique meshes found by our self-supervised
framework. 66

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

List of abreviations

BIM – Building Information Modeling
CAD – Computer-Aided Design
CNN – Convolutional Neural Network
FFD – Free-Form Deformation
FPS – Frames Per Second
HDBSCAN – Hierarchical Density-Based Spatial Clustering of Applications with Noise
ICP – Iterative Closest Point
IR – Instance Registration
LK – Lucas & Kanade
MST – Minimum Spanning Tree
PCA – Principal Component Analysis
RANSAC – Random Sample Consensus
SICP – Scaling Iterative Closest Point

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

If you have the habit of taking things with
joy, you will seldom find yourself in difficult
circumstances.

Baden-Powell.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

1
Introduction

Computer-Aided Design (CAD) systems, used to design data-rich 3D
CAD models, play an important role throughout the different phases of
engineering projects’ life cycle, such as: construction design, maintenance
planning and execution, and operations monitoring. In civil construction, for
example, the Build Information Modeling (BIM) methodology promotes the
use of 3D CAD models to efficiently analyze large amounts of data, improving
the facility management tasks while minimizing its overall costs (Eastman et
al., 2011; Gielingh, 2008; Hardin & McCool, 2015; Kim et al., 2017; Process
Industries STEP Consortium, 1994).

The recent popularization of the BIM methodology, alongside with the
expanding application of Digital Twins for smart manufacturing (Kritzinger
et al., 2018; Qi et al., 2018; Shao & Helu, 2020), are increasing the demand
for more detailed and complex 3D CAD models. As a consequence, today’s
datasets can reach millions of polygons with a high level of detail, as shown in
Figure 1.1, imposing challenges to different computing tasks, such as efficient
storage, transmission, and rendering.

The 3D CAD models of industrial plants are composed of several in-
stances of individual connected components, or geometries, which are repre-
sented as primitives and, often, as triangular meshes. Despite the fact that
several of these individual geometries appear repeated inside the model, plant-
design software usually does not provide any instancing information to mini-
mize such representation redundancy.

Previous research has already addressed the redundancy removal task in
3D CAD models (Santos & Celes Filho, 2014), showing that it is possible to
significantly reduce the size and complexity of 3D CAD models, improving their
transmission and storage. The authors relied on a least-square minimization
shape matching approach to identify repeated triangle meshes on the 3D CAD
model, which computed an affine transformation that can be used to instantiate
them. Using this approach, the authors showed that rendering performance is
also improved, once it enables the use of hardware-accelerated instancing API
(Pharr & Fernando, 2005).

However, this approach is heavily dependent on mesh topology and vertex

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 1. Introduction 15

(a)

(b) (c)

Figure 1.1: In (a), we illustrate an example of a 3D CAD model containing
8,933,975 geometries, and almost half of them are represented as triangle
meshes. In (b) and (c), we observe visual structures that are composed of
many triangle meshes, highlighted in blue, green, red, and pink, increasing the
level of detail and complexity of the CAD model.

incidence order; in reality, this is not always the case. During an engineering
project’s modeling stage, different parts of the digital plant can be designed by
different professionals using different techniques and different software, which
can result in different triangulations for the same 3D shape. Furthermore, the
3D CAD model is often updated according to modifications on the real-life
industrial plant, and different techniques for data acquisition may be used,
such as 3D scanners, which may lead to new 3D geometries with completely
different topologies.

With the recent advances in the deep learning field of research, especially

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 1. Introduction 16

geometric deep learning, several geometric tasks obtained significant improve-
ment, such as shape registration (Hanocka et al., 2018), and point cloud pro-
cessing. In the context of point cloud processing, several tasks benefited from
these recent advances, such as point cloud classification and segmentation (Qi
et al., 2017a; Qi et al., 2017b), primitive classification and fitting (Li et al.,
2019), point cloud registration (Aoki et al., 2019), surface mesh reconstruction
(Hanocka et al., 2020), and point cloud representation and clustering (Hassani
& Haley, 2019; Rao et al., 2020; Remelli et al., 2019; Zamorski et al., 2020). In
spite of these advances, when it comes to the CAD domain, some limitations
are found in these existing techniques, such as being specialized to work with
primitive geometries or considering only uniform scale transformations, both
of which limit the applicability to general 3D CAD models.

Inspired by these recent work, we propose a deep learning-based frame-
work, which relies on uniformly sampled point clouds on triangle meshes, to
remove the redundancy representation derived from the repetition of individ-
ual geometries on the 3D CAD model. The framework consists of two main
steps: first, we identify similar meshes on the 3D CAD model, and second,
we estimate an affine transformation matrix that can be used to instantiate
them. For the first step, based on the recent success of the PointNet++ (Qi et
al., 2017b) network, we developed a supervised approach, training the Point-
Net++ network to classify an input mesh into one of the known reference
triangle meshes that are found on the model. Aiming to address the neces-
sity of a previous knowledge about the geometries found on the model, we
also developed a self-supervised approach, training an autoencoder based on
the PointNet++ architecture to obtain feature vectors for the model’s meshes,
which are later used to cluster them in an unsupervised manner.

In order to estimate an affine transformation matrix to instantiate each
mesh on the model using its reference mesh, we developed a registration
technique, which relies on uniformly sampled point clouds to fit the reference
mesh into the original one. To perform this task, the technique uses Principal
Component Analysis (PCA) (Wold et al., 1987) and Adam optimization
(Kingma & Ba, 2014), taking non-uniform scaling into consideration.

The proposed framework overcomes the main drawbacks of previous ap-
proaches. The method is independent of vertex order, and surface triangula-
tion since it relies on point clouds that are uniformly sampled on the triangle
meshes surface throughout the framework. Furthermore, the method general-
izes for any kind of geometry and is well suited to the 3D CAD domain, whilst
computing an affine transformation matrix, taking non-uniform scaling into
account, to instantiate generic triangle meshes.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 1. Introduction 17

Using the proposed framework with the supervised approach, we were
able to reduce the number of triangle meshes required to represent the 3D CAD
model of one dataset to as few as 18, translating into a memory reduction of
97.39% from the original size, an equivalent result when compared to Santos
& Celes Filho, 2014, method. However, in a worst-case scenario, where the
geometries have no vertex and triangulation correspondence, we significantly
outperformed the previous work. We also compared the developed point cloud
registration technique with previous work, demonstrating that the technique
obtains lower surface error, while also performing faster on average.

When using the proposed framework with the self-supervised approach,
which removes the need of previous knowledge about the model, we obtained a
maximum memory reduction of 83.93% in the same dataset of the supervised
approach. This result is close to the result obtained with the supervised
approach, and still represents a meaningful overall memory reduction. In
another dataset, which contains a greater variety of models and meshes with no
labeling information, we were still able to obtain a maximum average memory
reduction of 77.63%. When comparing to the previous method proposed by
Santos & Celes Filho, 2014, we improved the memory reduction by a maximum
of 24.69%, and 5.62% on average.

1.1
Objectives

This work aims to optimize the representation of 3D CAD models
by minimizing the redundancy representation derived from the repetition of
similar triangle meshes found on them. To achieve this, we propose a supervised
and a self-supervised approach that identifies instances of similar triangle
meshes and estimates a transformation that can be used to instantiate them.
We highlight that obtaining a transformation well suited for 3D CAD models
is essential. Regarding this, this work proposes a registration procedure that
estimates an affine transformation, considering the non-uniform scales that are
frequently observed between instances of repeated triangle meshes, and which
is also well suited for the 3D CAD visualization domain.

Furthermore, our goal is also to overcome the following drawbacks found
on previous works:

1. High dependency on vertex incidence order and triangle mesh
topology. As mentioned earlier, similar 3D shapes may present different
triangulations, depending on the modeling technique and software that
was used, and, as consequence, being heavily dependent on the vertices
incidence order and the meshes topology, may limit the amount of

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 1. Introduction 18

repeated triangle meshes that are identified as instances of one another.
To address this issue, the proposed approaches relies on point clouds
uniformly sampled on the triangle meshes surfaces to identify similar
triangle meshes in the 3D CAD model, and also to estimate an affine
transformation that can be used to instantiate them.

2. Consider only primitive geometries. The 3D CAD models are com-
posed of primitives and triangle meshes. With the increasing demand for
more detailed CAD models, triangle meshes that cannot be represented
by a primitive geometry appear more frequently inside the model. In
this context, considering only primitives during the redundancy removal
process may limit the amount of optimization obtained. In this work, we
designed a supervised and a self-supervised framework that can gener-
alize to any kind of geometry, since it takes advantage of point clouds
uniformly sampled on generic triangle mesh surfaces.

1.2
Contributions

The conducted study to minimize the redundancy representation found
in 3D CAD models has the following contributions:

1. Supervised and self-supervised frameworks for shape match-
ing on 3D CAD models. This work proposes both supervised and
self-supervised deep-learning-based frameworks to remove redundant in-
formation on 3D CAD models. Removing this redundant information
on CAD models can improve several tasks associated with their ma-
nipulation and processing. Although previous approaches have been de-
veloped, they have some limitations. In this context, the proposed su-
pervised framework combines point clouds classification and registration
techniques to overcome such limitations, obtaining competitive results
by leveraging labeled geometries in the CAD model (97.39% of memory
reduction), and outperforming previous work in certain scenarios. On the
other hand, the self-supervised framework relies on clustering techniques
to overcome, in addition to previous works limitations, also the absence
of labeled geometries, maintaining a significant memory reduction on a
labeled dataset (83.93%) while outperforming previous work on an unla-
beled one by 5.62% on average. To the best of our knowledge, this is the
first work to address this task on 3D CAD models in such a generalist
way, and the obtained results emphasize the relevance of the proposed

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 1. Introduction 19

approach. Furthermore, both proposed frameworks have the following
advantages:

(a) Independence of vertex order and mesh topology. Instead of
using point correspondence information to minimize the redundant
information in a CAD model, the proposed frameworks rely on
uniformly sampled point clouds on the triangles meshes’ surface
and, as a consequence, is independent of vertex order and mesh
topology. This characteristic makes our approaches more robust,
obtaining a significant memory reduction under different scenarios.

(b) Generalization for any kind of geometry. Considering only
primitives during the redundancy removal process may limit the
amount of instances found on the CAD model. In this regard, our
approaches generalize for any kind of geometry, since they rely on
uniformly sampled point clouds throughout the whole redundancy
removal process.

(c) Guaranteed upper bound on geometric errors. During the
3D CAD model optimization, errors may be introduced by misclas-
sifications or unsatisfactory clustering. Moreover, the registration
procedure may eventually introduce errors due to an inadequate
registration. In this regard, after the registration, we evaluate the
quality of the final instantiated mesh, guaranteeing a specified up-
per bound on any surface errors found on the optimized model.

2. Registration algorithm well suited for the 3D CAD domain.
Most previous registration techniques are not well suited for the 3D
CAD domain. Indeed, the estimated transformation is not well suited
for rendering purposes, and non-uniform scaling, commonly found on 3D
CAD geometries, is not considered. The developed registration procedure
considers non-uniform scaling when estimating an affine transformation
matrix, which is well-suited for rendering purposes and the 3D CAD
domain. Furthermore, when compared to previous work that is also well
suited for the 3D CAD domain, our procedure was able to obtain lower
surface error while being faster on average.

1.3
Document Organization

The remainder of this work is organized as follows. In Chapter 2, we
present related works on shape matching and other machine learning tasks,

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 1. Introduction 20

highlighting drawbacks and the reasons why they are not well suited for the
3D CAD domain. Then, in Chapter 3, we make an overview of the main
techniques used to perform the identification of similar meshes and the affine
transformation matrix estimation.

The proposed framework with the supervised approach is introduced in
Chapter 4. In this Chapter, we first present an overview of the framework, de-
tailing each one of its stages. Furthermore, we show the results obtained using
a labeled dataset, comparing it with different approaches to estimate the affine
transformation matrix. Moreover, we discuss these results, demonstrating the
effectiveness of the proposed solution and also its major drawback: the de-
pendency on previous knowledge about the geometries found in the 3D CAD
model.

In Chapter 5, we present the framework using a self-supervised approach,
which overcomes the previous approach drawback, highlighting the adaptations
made to the framework. We also present the obtained results using the labeled
dataset and a more complex unlabeled one, comparing the results with the
previous supervised approach and previous work that also does not require
any previous knowledge about the model, demonstrating that the proposed
solution was successful.

Finally, in Chapter 6, we conclude this work, analyzing how it overcomes
previous work’s major drawbacks and proposing future research opportunities
that may improve the redundancy removal on 3D CAD models.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

2
Related Work

In this Chapter, we discuss on previous works that could be used
to remove redundant representation on 3D CAD models, subdividing into
two groups regarding the use of deep learning techniques, highlighting their
drawbacks and how our work overcomes them. Moreover, in Section 2.2, we
also comment about previous work on other deep learning tasks, analyzing
how it relates to our work.

2.1
Geometric Approaches

3D shape matching is an essential topic from the geometry processing
point of view. Aiming to address this task, several approaches were developed
to estimate a transformation between two corresponding point sets, e.g. mesh
vertices, relying on the least squared minimization technique (Eggert et al.,
1997; Horn, 1987; Kanatani, 1994; Umeyama, 1991). These approaches esti-
mate rotations, rigid-body, or similarity transformations, which do not take
non-uniform scaling into account. However, non-uniform scaling is commonly
found between 3D CAD models repeated geometries. Thus, using such tech-
niques would restrict the instances found, limiting the amount of redundant
representation removed.

Works on symmetry analysis were also developed to perform shape
matching, identifying similar 3D structures and computing transformations
between them (Alt et al., 1988; Gal & Cohen-Or, 2006; Martinet et al., 2006;
Mitra et al., 2006). Pauly et al., 2008, developed a framework that identifies a
diversity of 3D structures on triangle meshes and point clouds, decomposing
it into repeated regular structures and performing a registration procedure to
obtain similarity transformations that can be used to instantiate the original
geometry. Nevertheless, these works do not consider non-uniform scaling on
the estimated transformation, and, as mentioned earlier, the model would not
be as optimized as it could.

Regarding point cloud registration, the Iterative Closest Point (ICP)
(Besl & McKay, 1992) is a well-known technique that iteratively performs
a least square minimization procedure using estimated point set correspon-

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 2. Related Work 22

dence, obtaining a rigid-body transformation from one point cloud to another.
Although researches were developed to improve the ICP robustness, by intro-
ducing other techniques into the algorithm (Granger & Pennec, 2002; Sharp
et al., 2002; Silva et al., 2005), and also to obtain an uniform scaling registra-
tion (Zha et al., 2000; Zinßer et al., 2005), they do not consider non-uniform
scaling.

Later, Du et al., 2010, presented the Scaling Iterative Closest Point
(SICP). The authors introduced a scale matrix directly into the least square
minimization step, successfully adapting the ICP algorithm to take non-
uniform scaling into account, obtaining an affine transformations matrix,
similar to our approach. However, as presented in Section 4.3.2.1, our proposed
registration technique, using PCA combined with the Adam optimization, was
able to obtain more accurate results while performing faster on average.

More recently, Santos & Celes Filho, 2014, proposed a least squares
minimization approach to identify similar triangle meshes on a 3D CAD model
that overcomes previous constraints. Their technique relies on a point set
registration procedure that computes an affine transformation matrix which
minimizes the squared distances between the corresponding vertices of an
input triangle mesh and a reference mesh. Using this technique to instantiate
repeated triangle meshes on 3D CAD models, the authors significantly reduced
the memory required to represent a 3D CAD model (only 6% of its original
size), while maintaining real-time rendering performance. However, their shape
matching technique has two major drawbacks:

1. It depends heavily on the mesh topology and the vertex incidence order.
In other words, visually identical meshes but with vertices in a different
order, with different triangulation or discretization, are not recognized
as repeated triangle meshes.

2. It only considers the mesh vertices, meaning that it may disregard
important surface features derived from the triangulation.

Our proposed approach overcomes these restrictions by relying on dense
point clouds that are uniformly sampled on the triangle meshes’ surfaces. This
makes the technique independent of the mesh triangulation and the vertices
incidence order, while guaranteeing an upper bound on any surface errors.
Therefore, we are able to identify a greater diversity of repeated triangle meshes
under different scenarios.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 2. Related Work 23

2.2
Deep Learning-Based Approaches

The 3D shape matching task was addressed using deep learning-based
techniques. Hanocka et al., 2018, designed a deep neural network that suc-
cessfully aligns a source shape into a target one using Free-Form Deformation
(FFD) grids, even when the target shape is only partial. In spite of the fact that
the authors obtained accurate results, FFD grids are not efficient to render a
large amount of instanced meshes. On the other hand, our proposed approach
estimates matrix transformations, which are efficiently used by modern graph-
ics hardware.

In the context of point cloud registration, several researches exploited
the recent advances in deep learning to address this task (Kurobe et al., 2020;
Wang & Solomon, 2019; Yew & Lee, 2018). Aoki et al., 2019, combined the
PointNet (Qi et al., 2017a) network architecture with a modified Lucas &
Kanade (LK) algorithm (Lucas, Kanade, et al., 1981) to estimate a rigid-body
transformation that aligns an input point cloud into a target one. However, as
mentioned earlier, non-uniform scaling is often encountered between repeated
triangle meshes on 3D CAD models, and not considering it may limit the
amount of instances found.

Other research relies on geometric deep learning techniques, which are
further detailed, to segment and detect primitives (cones, cylinders, spheres,
and planes), while also estimating their corresponding parameters, on point
clouds (Li et al., 2019). The authors adapted the PointNet++ (Qi et al.,
2017b) architecture, to compute the primitives’ parameters while segmenting
the points in the point cloud. Also in the context of primitive fitting, Friedrich
et al., 2020, proposed a hybrid framework, similar to ours, to segment and
fit primitives (cuboids, planes, spheres, and cylinders) on 3D point clouds.
The hybrid framework relies on the PointNet++ and the RANSAC approach
(Schnabel et al., 2007), combined with a genetic algorithm to generate solid
primitives. Although the estimated parameters by these approaches could be
used to instantiate repeated CAD geometries, the redundancy removal would
be limited to primitives only, while our proposed approach uses triangle meshes,
generalizing for any kind of geometry.

The point cloud classification and segmentation tasks benefited from
recent deep learning advances, and several works proposed neural network
architectures to address these tasks (Ben-Shabat et al., 2017, 2018; Gomez-
Donoso et al., 2017; Hegde & Gangisetty, 2021; Hermosilla et al., 2018;
Ravanbakhsh et al., 2016; Te et al., 2018; Wang et al., 2021; Wang et
al., 2018; Wu et al., 2019). The PointNet (Qi et al., 2017a) architecture

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 2. Related Work 24

was a breakthrough solution to perform both supervised classification and
segmentation on point clouds, being able to process raw unordered point clouds
as input. Lately, the PointNet++ (Qi et al., 2017b) extended the PointNet
architecture to hierarchically aggregate features in local point sets, obtaining
robust classification and segmentation results. In our case, the 3D CAD models
are already segmented into individual geometries; thus, in our supervised
approach, we leverage the PointNet++ success to only classify them.

Other unsupervised and self-supervised tasks, such as point cloud repre-
sentation, also benefited from recent deep learning advances. The representa-
tion learning aims to learn a data representation that facilitates other down-
stream tasks (Bengio et al., 2013), such as point cloud classification (Achliop-
tas et al., 2018; Hassani & Haley, 2019; Jiang et al., 2021; Rao et al., 2020;
Remelli et al., 2019), segmentation (Hassani & Haley, 2019), semantic segmen-
tation (Bachmann et al., 2021; Jiang et al., 2021), clustering (Remelli et al.,
2019; Zamorski et al., 2020), up-sampling (Remelli et al., 2019) and reconstruc-
tion (Achlioptas et al., 2018; Bachmann et al., 2021; Zamorski et al., 2020).
To address the point cloud representation learning task, these works usually
combine an encoder with a decoder that aims to reconstruct the input, and, as
a consequence, the encoder learns meaningful features to compactly represent
the input point cloud. In our self-supervised approach, the goal is to cluster
similar point clouds sampled on the meshes surfaces to reduce the redundant
information on 3D CAD models. Therefore, we leverage this autoencoder ap-
proach to obtain point cloud feature vectors that can later be used to cluster
the meshes found on the model.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

3
Shape Matching Background

In this Chapter, we present some theoretical foundations for both the
supervised and self-supervised proposed frameworks. First, we discuss the deep
learning on point sets and its challenges, and detail the deep neural network
that we used to perform the point cloud classification. Second, we introduce
the autoencoder concept and how it can be used to extract feature vectors
for an input point cloud. Third, we present the clustering algorithms used to
group similar point clouds during the redundancy removal process.

3.1
Deep Learning on Point Sets

Point clouds are an important representation of 3D structures, being
the closest representation of raw sensor data and also being canonical, once
other types of representation, such as triangle meshes, can be easily translated
into a point cloud. However, this type of representation has some challenges,
especially for deep learning processing, since the data is unstructured, meaning
that the distance from one point to another is not fixed like, for example, in
regular grids, and it is also unordered, since the order in which the point set
is stored does not change the represented scene or geometry.

Most of the earlier success of deep learning applications comes from
convolutional neural networks (CNNs), which apply a convolution operation on
structured and ordered data. To overcome these challenges, earlier approaches
transformed the point clouds into volumetric occupancy grids or in a set of
images from different points of view, as exemplified in Figure 3.1, enabling the
application of the convolutional operator. Yet, these transformations produce
an unnecessarily larger dataset, while also introducing quantization artifacts.

In this context, Qi et al., 2017a, introduced the PointNet, visualized in
Figure 3.2, a deep neural network that processes raw unordered point clouds
directly as an input. To achieve this, the authors combined two alignment
networks with a simple symmetric function and also, in the segmentation
network, concatenated the global point cloud features with the local point
features. These characteristics respectively make the network invariant to rigid-
body transformations, invariant to any input permutation, and also aggregate

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 26

(a) Example of volumetric occupancy grid of a point cloud. After the grid is obtained,
volumetric CNNs may be used to classify the input. This image was adapted from
Bello et al., 2020.

(b) Example of the multi-view approach to classify point clouds, where the object is
rendered into multiple images and 2D CNNs are used to classify the object. Image
adapted from Bello et al., 2020.

Figure 3.1: Example of earlier approaches to process point clouds.

local and global information, which is important to perform per-point tasks,
such as point segmentation or point normal prediction.

However, the PointNet does not capture local structures derived from the
space where the points are located, which limits its generalization capability
and the ability to identify fine-grained patterns. The ability to capture local
structures is an important characteristic for the success of CNNs. These
networks progressively capture features along a multi-resolution hierarchy,
abstracting local patterns, which allows better generalization to unseen data.

Aiming to address this issue, Qi et al., 2017b, extended the PointNet
architecture, introducing the PointNet++, visualized in Figure 3.3. This
extended architecture hierarchically aggregates local features by sampling and

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 27

grouping the point set into local overlapping regions and using the PointNet as
the local feature learner. For the sampling operation, the PointNet++ uses the
iterative farthest point sampling to find centroids on the point set, obtaining
a better coverage of the entire point set than random sampling with the same
number of centroids, and, for the grouping operation, a ball query is used to
find the neighborhood points of the centroid.

Figure 3.2: The PointNet architecture. First, point and feature transformations
are applied to the input point cloud, then, the max pooling symmetric function
is used to aggregate the point features. The classification network relies on the
global feature vector to compute scores for k classes. The segmentation network
concatenates the global feature vector with local features to compute per-point
scores. Image adapted from Qi et al., 2017a.

Figure 3.3: The PointNet++ architecture, which is composed of set abstraction
layers that recursively sample, group, and obtain local features using the
PointNet (Qi et al., 2017a). The classification network relies on the final feature
vector to compute scores for k classes. The segmentation network recursively
interpolates the feature values, concatenate with skip linked feature, and uses
a unit PointNet, which adjusts the feature size, to compute per point scores.
Image adapted from Qi et al., 2017b.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 28

The PointNet++ architecture process point sets in a similar way to
how CNNs process regular grid data, recursively capturing local geometric
structures, which are further grouped and processed to obtain higher-level
features. Using this powerful neural network, the authors were able to achieve
state-of-the-art performance on the point cloud classification task.

3.2
Autoencoders

Rumelhart et al., 1985, introduced the autoencoder as a neural network
that is trained to reconstruct its input, aiming to learn, in a self-supervised
manner, a meaningful representation of the data. The autoencoder usually is
composed of an encoder, a bottleneck, and a decoder, visualized in Figure 3.4.
During the training process, the encoder learns to represent the input into
the bottleneck structure, usually smaller than the input, obtaining a compact
meaningful representation of the input, while the decoder learns to reconstruct
the input using this compact representation.

Figure 3.4: Example of an autoencoder for point clouds. The encoder receives
an input point cloud and produces a compressed representation of it, while
the decoder uses this compressed representation to reconstruct the input point
cloud.

This autoencoder architecture may be used in tasks such as semi-
supervised classification and unsupervised clustering. In the classification task,
this approach is useful when large datasets are provided with only a small
portion of labeled examples, where first, the autoencoder is trained to learn a
meaningful representation of the data, and then, the decoder is replaced with a
classification network, which is further fine-tuned using the labeled data. In the
clustering task, the autoencoder may be used to obtain a compact meaningful
representation, or feature vector, for each instance in the dataset, which can
be further used as input to traditional clustering algorithms.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 29

3.3
Clustering

Clustering is an essential task in the unsupervised learning research field,
aiming to find an underlying structure in unlabeled datasets by grouping
similar instances into the same cluster while maintaining different instances
apart. One possible classification of the clustering algorithms is into partitional
and hierarchical. The partitional clustering algorithms, as the name suggests,
partition the data into a set of clusters with no hierarchical structure, where
each cluster is represented by a centroid or a cluster representative, by iterative
reallocating the instances in the set of clusters until convergence is achieved.
On the other hand, the hierarchical clustering algorithms group the data
successively, using previous clusters to find new ones in both top-down and
bottom-up strategies. In the following sections, we describe further details on
the clustering algorithms used in this work, the K-Means algorithm, which is
partitional, and the HDBSCAN, which is hierarchical.

3.3.1
K-Means

The K-Means is a simple well-known clustering algorithm that assigns
each point, or feature vector, into one of the K clusters that are desired as
output, minimizing the total squared Euclidean distance between each point
and its nearest center. To achieve this, first, a set of K centroids are randomly
selected; second, each input point is assigned to the nearest centroid cluster;
third, after assigning all the points in the dataset, the clusters centroids are
updated using the average of its members; and finally, the second and third
steps are repeated until there are no changes in all the clusters. This procedure
is summarized in Algorithm 1.

Algorithm 1 K-Means
Input:

K: Number of clusters
Output:

C: Set of K clusters

1: Randomly select K initial centroids C = {c1, c2, . . . , ck}
2: while C is changing do
3: for i← 1 to k do
4: Ci ← points closer to ci than to cj for all j ̸= i

5: for i← 1 to k do
6: Update centroids: ci = 1

|Ci|
∑

x∈Ci
x

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 30

Although K-Means is extremely popular due to its simplicity, it has
some drawbacks, such as how to best define the number of clusters, which
is an input parameter of the algorithm, how to best define the initial cluster’s
centroids, and also, there is no guarantee that a global optimal partition is
achieved. Aiming to define a better initialization of the cluster’s centroids,
Arthur & Vassilvitskii, 2006, proposed the K-Means++, which, instead of
sampling K initial centroids with uniform probability, it selects the initial
centroids with a probability that is proportional to the squared distance to
its nearest cluster centroid, as shown in the third step of Algorithm 2. This
initialization procedure is summarized in Algorithm 2.

Algorithm 2 K-Means++
X: Set of data points.
d(x): Distance from a point x to its nearest cluster center.

1: C ← x ∈ X randomly selected with uniform probability
2: while |C| < K do
3: Select x ∈ X with probability 1∑

x∈X
d(x)2 d(x)2

4: C ← C ∪ {x}
5: Continue the K-Means execution

Using the K-Means++ initialization, the authors improved the clustering,
getting it closer to its global optimum, while also performing faster than the
traditional K-Means. More recently, Bahmani et al., 2012, proposed the K-
Means||, a parallel version of the K-Means++, improving its scalability and
performance, while maintaining the clustering quality at least as good as
previous methods. To achieve this, instead of sampling one cluster center at a
time during the initialization, an oversampling factor is used to sample more
potential center clusters at once, which are further reclustered to find the initial
clusters centers, using the K-Means++ with weights equal to number of points
in X closer to the potential center.

Other research addressed the question of how to estimate the desired
number of clusters K. The ISODATA algorithm (Ball & Hall, 1967), for
example, is very similar to the standard K-Means; however, it dynamically
updates the value of K during the iteration, merging and splitting clusters
based on its similarity and standard deviation, using the updated K for the
next iterations. On the other hand, aiming to obtain the parameter K which
best cluster a dataset, Pelleg, Moore, et al., 2000, proposed the X-Means, which
executes the K-Means for a range of possible number of clusters, choosing
the one with best Bayesian Information Criterion (BIC) (Kass & Wasserman,
1995). Hamerly & Elkan, 2003, developed yet another approach, the G-Means

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 31

algorithm, which runs the K-Means for a small initial number of K, and, at
each iteration, split the clusters that do not follow a Gaussian distribution,
stopping when no additional clusters are required.

3.3.2
HDBSCAN

Hierarchical Density-Based Spatial Clustering of Applications with Noise,
or HDBSCAN (Campello et al., 2013), extends the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) (Ester et al., 1996), to make it
hierarchical. The HDBSCAN does not suffer from previous drawbacks of previ-
ous density-based clustering algorithms, such as using a global density thresh-
old, which does not properly describe datasets with varying clusters densities,
not automatically simplifying the clustering hierarchy into a representation
that involves only the most significant clusters, or depending on multiple in-
put parameters.

Using X = {x1, x2, . . . , xn} as the set of n points to be clustered,
the algorithm receives as input the number of points mpts which is used to
determine if a point xp ∈ X is a core point, where xp is a core point if in its
neighborhood with distance ϵ contains at least mpts including the point itself.
Relying on this concept of core points, and the concept of core distance, which
is the distance from the point xp to its mpts-nearest neighbor, the HDBSCAN
executes five main steps:

1. Compute the core distance for all x ∈ X;

2. Build a Minimum Spanning Tree (MST) using the mutual reachability
distance (Equation 3-1);

3. Extract the HDBSCAN hierarchy from the MST;

4. Condense the HDBSCAN hierarchy based on the minimum cluster size;

5. Obtain the stable clusters from the condensed hierarchy.

In order to compute the core distance, several distance metrics may
be used; however, the Euclidean distance is commonly used. Once the core
distances are computed using the Euclidean distance, to compute the MST,
first, the mutual reachability graph is constructed, using each x ∈ X as vertices
and the edge’s weights are computed using the mutual reachability distance:

dmreach(xi, xj) = max(dcore(xi), dcore(xj), d(xi, xj)) (3-1)

where xi and xj are points of X, dmreach is the mutual reachability distance,
dcore is the core distance and d is the distance metric used; in this case, the

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 32

Euclidean distance. After computing the mutual reachability graph, the MST
is constructed using Prim’s algorithm (Prim, 1957). This process is exemplified
in Figure 3.5.

(a) Data points to be clustered. (b) Minimum Spanning Tree.

Figure 3.5: Example of a dataset to be clustered using the HDBSCAN and the
computed MST using mpts = 2.

Having the MST computed, the HDBSCAN hierarchy can be extracted
by, firstly, assigning all points to the same cluster, and then, iteratively
removing the edges in a decreasing order of weights, assigning new cluster
labels to the connected components that contain the vertices of the removed
edges if they maintained at least one edge, and assigning as noise if they do
not. The HDBSCAN hierarchy of the example in Figure 3.5b is visualized as
a dendrogram in Figure 3.6.

Figure 3.6: Visualization of the HDBSCAN hierarchy of the example in Figure
3.5b as a dendrogram.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 33

At this stage, the HDBSCAN hierarchy tree contains all partitions that
could be obtained using the DBSCAN, however, in a hierarchical way. In
practice, the DBSCAN would perform a horizontal cut in the dendrogram at
a global distance scale ϵ, obtaining the clusters and interpreting any singleton
cluster as noise. On the other hand, the HDBSCAN continues processing to
obtain clusters with varying densities, allowing cuts at different levels of the
hierarchy to obtain the most significant clusters.

To achieve this, a condensed HDBSCAN hierarchy is computed instead,
using the notion of minimum cluster size, mclSize , an optional parameter
that can be simplified, being equal to mpts. During the computation of the
condensed HDBSCAN hierarchy, components whose size is smaller than mclSize

are not considered as a true cluster split when disconnected from a cluster.
Using this new strategy, after an edge removal, the resulting connected sub-
components can be: (i) noise, if they are smaller than mclSize, (ii) same cluster,
if only one sub-component greater than mclSize is obtained and (iii) new
clusters, if two or more sub-components greater than mclSize are obtained.
After performing this process, and using λ = 1

ϵ
as a cluster persistence metric,

we obtain the condensed HDBSCAN hierarchy visualized in Figure 3.7.

Figure 3.7: Visualization of the condensed HDBSCAN hierarchy of the example
in Figure 3.5.

Finally, using the clusters’ stability as:∑
x∈cluster

(λx − λmin) (3-2)

where λx is the λ value in which the point x was removed from the cluster and
λmin is the value in which the cluster appeared, combined with the restriction

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 3. Shape Matching Background 34

that, if a cluster is selected, none of its descendants can be selected, the most
stable and significant clusters can be obtained from the condensed HDBSCAN
hierarchy. To perform this task, a bottom-up approach is used, in which, first,
all leaf nodes are declared as selected clusters, then, if a cluster stability is
greater than the sum of its children’s stability, the cluster is selected and its
descendants are deselected, and if it is smaller, the cluster stability is set as
the sum of its children’s stability. When the root is achieved, the current set of
selected clusters is used as the clustering. This final result is shown in Figure
3.8.

(a) Selected clusters in the condensed
HDBSCAN hierarchy.

(b) Data points color-coded according to
the clustering result.

Figure 3.8: Cluster selection of the example in Figure 3.5. Although there
exists a horizontal cut that could be used to select these clusters, this is not a
limitation of the HDBSCAN algorithm, which, using the clusters stability to
select them, can choose clusters that are in different positions in the condensed
HDBSCAN hierarchy.

Furthermore, the strength cluster membership of each point x ∈ cluster,
which is an important metric for some applications, can also be computed. To
compute this metric, for each cluster, all of the λx for the points inside the
cluster are normalized between [0, 1], meaning that points that remained for
a longer time in the cluster have greater strength membership than the ones
that were removed earlier.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

4
Supervised Shape Instance Matching Framework

In this Chapter, we detail the proposed supervised framework for the
shape matching problem on 3D CAD models, present the results obtained
using the proposed framework and discuss on them. Our objective is to obtain
a shape matching solution to minimize the redundancy representation of the
CAD models, which overcomes previous work drawbacks: considering only
primitives during the redundancy removal process, being heavily dependent on
the mesh topology and vertices incidence order, and obtaining a registration
transformation that is not well suited for the 3D CAD domain. To address these
drawbacks, the proposed framework relies on point clouds uniformly sampled
on generic meshes surfaces, which makes it independent of the mesh topology
and vertices ordering while also generalizing for any kind of geometry. The
proposed framework also uses a registration procedure that obtains an affine
transformation matrix, which is well suited for the 3D CAD domain, once
it takes into account non-uniform scaling while enables the use of hardware-
accelerated API for rendering (Pharr & Fernando, 2005).

The proposed supervised shape matching framework, illustrated in Figure
4.1, takes a single triangle mesh as input, depicted as a purple cylinder, and
first executes a preprocessing step. It is important to mention that the 3D
CAD models are composed of multiple triangle meshes, which are processed
individually by the framework. This preprocessing step is composed of two
main steps, the normalization, and the uniform point cloud sampling. In the
normalization step, the center of mass of the triangle mesh is translated to
the origin, [0, 0, 0]; then, its principal components are aligned with the 3D axis
X, Y, Z, and finally, the triangle mesh is scaled into the [−0.5, 0.5] range. Once
the mesh is normalized, a dense and uniform point cloud P ∈ RN×3 is sampled
on its surface.

After completing the preprocessing step, the framework relies on the
PointNet++ (Qi et al., 2017b) deep neural network to classify the point cloud
P into one of the previously known reference types, which have a normalized
triangle mesh associated. To choose the predicted reference type, we select the
one with the highest score among PointNet++ output. We highlight that the
supervised framework supports any number of reference types, as long as they

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 36

are used to train the network.

Figure 4.1: Overview of the proposed supervised framework, which is composed
of three main steps: the preprocessing, the classification and the instance
registration.

Having the reference type identified by the classification step, the instance
registration procedure is executed. This procedure relies on point clouds
sampled on the reference mesh (the source) and the normalized input mesh
(the target), to perform a point cloud registration that estimates a matrix
M3×3, that is combined with the inverse transformations used to normalize the
input mesh to obtain an instancing matrix M3×4. We chose to represent the
instancing matrix in this manner, encoding the scale, rotation, and translation,
because only an affine transformation is required and not projective ones.
This instancing matrix, combined with the reference mesh, acts as a compact
representation of the input mesh, reducing the 3D CAD model size and
enabling the instance rendering technique.

In the following sections, we further detail the preprocessing and the
instance registration steps. We also present the performed experiments on a
labeled dataset, describing how the PointNet++ was trained and discussing
the obtained results.

4.1
Preprocessing

The first step in the preprocessing stage is the normalization of the input
triangle mesh. To obtain a normalized triangle mesh, first, we translated the
center of mass of the input to the origin, subtracting the mesh’s arithmetic

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 37

mean, Vmean, from the vertices coordinates. In the second operation, inspired
by Souza Moreira, 2015, we align the mesh with the 3D axis X, Y, Z. To
perform this alignment, first, the principal components of the mesh’s vertices
are obtained using the Principal Component Analysis (PCA) (Wold et al.,
1987) method, then an orthonormal basis is defined using the eigenvectors of
the vertices’ covariance matrix. These eigenvectors correspond to the directions
in which the vertex positions vary the most. To finalize the mesh alignment,
each vertex is transformed using the inverse rotation matrix, M−1

ev , which is
defined by the orthonormal basis. It is important to highlight that, for better
alignment, the density of points on the surface should be uniform, which is
not guaranteed when the mesh’s vertices are used; however, since the reference
meshes found on the labeled dataset are well behaved, this was not an issue,
and if that was not the case, a uniform point cloud sampled on the mesh’s
surface could be used.

In the final operation of the normalization procedure, we scale each
coordinate of the mesh’s vertices into the [−0.5, 0.5] range, dividing it by the
difference between each axis’s maximum and minimum values. This scaling
procedure applies a non-uniform scale to the mesh, since its vertices coordinates
are scaled separately. In this context, the previous PCA-based alignment is
used as an attempt to minimize unwanted shearing. In order to obtain the final
instancing matrix, while the normalization is executed, we store the translation
Vmean, the PCA orthonormal matrix Mev, and the non-uniform scaling matrix,
to denormalize the reference mesh after the registration procedure.

It is worth mentioning that the primary goal of the normalization
procedure is to increase the similarity between meshes that represent the same
3D shape, facilitating the identification of the reference type, since shapes
with non-uniform scaling are commonly found in the 3D CAD models. For
example, a long cylinder and a flattened one become very similar after this
normalization procedure. It is also worth mentioning that, since the PCA
eigenvectors may not match exactly, after the normalization, even though the
triangle meshes belong to the same reference type, they may not be aligned in
the same direction.

Having the triangle mesh normalized, the next step in the preprocessing
stage is to sample a dense and uniform point cloud on its surface. To perform
this, we use the approach developed by Osada et al., 2002, which estimates the
probability of a random point to be sampled on a triangle as being proportional
to its area. This relation is obtained by dividing each triangle area by the total
area of the triangles that represent the mesh, and performing a cumulative sum
on the result, obtaining an interval in the [0, 1] range, that contains smaller

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 38

intervals proportional to the associated triangle area. Then, a random number
in the [0, 1] interval is generated, and its associated triangle is selected. To
compute the point position p on the selected triangle (a, b, c), two additional
random numbers between 0 and 1 are generated, r1, r2, and the Equation 4-
1 is used to obtain the point coordinates. This procedure is executed until
the desired point cloud density is obtained. We highlight that, even if similar
meshes have different discretization, this procedure obtains similar uniform
point clouds for them.

p = (1−√r1)a +√r1(1− r2)b +√r1r2c (4-1)

4.2
Instance Registration

The main objective of the instance registration step is to estimate a
matrix M that can transform a source mesh, S, into a target mesh, T . To
perform the registration, we use the mesh associated with the reference type
predicted by the classification step as the source and the normalized input
triangle mesh as the target. Both source and target meshes are illustrated in
Figure 4.2. To estimate the matrix M , we developed an optimization procedure
inspired in the Point2Mesh (Hanocka et al., 2020). The Point2Mesh relies on a
deep neural network to shrink-wrap a point cloud with a surface by iteratively
deforming an initial triangle mesh. Similarly, our optimization procedure relies
on the Adam (Kingma & Ba, 2014) optimizer to iteratively update an initial
matrix in order to transform S into T , using uniform point clouds sampled on
them.

Figure 4.2: Example of input to the instance registration step. The blue
cylinder represents the reference mesh (source), and the purple one the input
normalized triangle mesh (target). The main objective is to estimate a matrix
that transforms the source mesh into the target one. Although the meshes may
look the same, this process is still required, since they are aligned on different
axis.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 39

To start the registration, first, a uniform point cloud Q is sampled on T .
The point cloud Q is used to compute the surface error of S transformed by
the matrix M using the following Equation:

Es =
∑

q∈Q Dmin(q,S ∗M)
NQ

(4-2)

where Es is the surface error, Dmin is the minimum Euclidean distance from a
point to a mesh, and NQ is the number of points in Q. We highlight that, to
compute Es, we sample the point cloud on T instead of S, because it does not
change during the optimization procedure, while S is continuously changing
to match T . It is also worth mentioning that Es is a scale-invariant metric,
since both S and T are normalized.

Defining α1, as the threshold for the desired maximum surface error,
first, we check if Es ≤ α1, and, if so, no optimization is needed and M is set to
identity, otherwise, we execute the iterative optimization procedure, which has
two nested iteration loops, defined as outer and inner loop. In the outer loop,
visualized in Figure 4.3, for ITo iterations, we sample the uniform point clouds
PS and PT, each containing NP points, respectively on S transformed by the
current M and T . Then, in order to facilitate the next steps, we transform PS

with the inverse of the current matrix, allowing M to be continuously updated.
The outer loop may be interrupted if Es ≤ α1, or if the density of the point
clouds, NP , was incremented for i times.

Figure 4.3: Scheme of the outer loop taking as input S and T , as the blue and
purple meshes, respectively. On the sampling step, PS and PT are obtained
with density equal to NP , and used as input to the inner loop. After the inner
loop finishes, the interruption conditions are verified, continuing the iterations
if none of them was satisfied.

We can interpret the outer loop as a control over the optimization, and

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 40

it has three objectives:

1. Interrupt the optimization when a desired surface error is achieved or
when it gets stuck in a local minimum, avoiding unnecessary computa-
tions;

2. Update the point clouds used in the inner loop, increasing their density
when the inner loop stops reducing the error metric;

3. Maintain PS uniform when transformed by M . Note that the area of the
triangles may change while the matrix is updated.

Figure 4.4: Scheme of the inner loop registration procedure taking as input PS
transformed by M and PT. The computed dCH is used as cost function by the
Adam optimizer to compute the gradients and update M . The optimization
procedure is interrupted when the number of iterations is finished or when
the cost function does not decrease for ITi/2 iterations, which is a heuristic
used to prevent excessive computational time on an optimization that is not
improving the cost function.

In the inner loop, visualized in Figure 4.4, the point cloud registration is
actually performed. Defining ITi as the maximum number of iterations on the
inner loop, first, we compute the Chamfer (pseudo) distance dCH :

dCH =
∑
x∈X

min
y∈Y
||x− y||2 +

∑
y∈Y

min
x∈X
||x− y||2 (4-3)

which is fast and differentiable (Fan et al., 2017). Setting PT as X and PS ∗M

as Y , we use it as a cost function on which the Adam optimizer computes
the gradients and updates M . After the matrix was updated, we check if the
cost function dCH has improved (decreased), interrupting the optimization if
it has not decreased for ITi/2 iterations. If the optimization was interrupted,
we also increment the point clouds density Np. During the execution of the

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 41

inner loop, ITi/2 is a heuristic used to avoid unnecessary computations when
the optimization is not decreasing dCH .

On early experimentation, we observed that, sometimes, the optimization
was getting caught in local minima, and the final registration error could be
further improved. In order to improve the optimization procedure, we used
the PCA on uniformly-sampled point clouds on both S and T to obtain their
orthonormal basis. These orthonormal basis can be interpreted as rotations,
which we combine, using the Equation 4-4, to initialize M before the whole
procedure. In Equation 4-4, PCAINIT is the combined rotation, B−1

S is the
inverse of the source rotation and BT is the target rotation.

PCAINIT = BT ∗B−1
S (4-4)

In Section 4.3.3, we present results showing that, initializing M with the com-
bined rotation PCAINIT , reduced the final optimization error while also im-
proving the average optimization time. The complete optimization procedure
is summarized in Algorithm 3.

Algorithm 3 Complete optimization procedure
Input:
S: Source mesh
T : Target mesh

Output:
M : Matrix that transforms S into T .

1: if Es <= α1 then
2: Set M to identity
3: else
4: Set M to PCAINIT

5: for n← 0 to ITo do
6: Sample PS and PT with Np points
7: Set PS = PS ∗M−1

8: for k ← 0 to ITi do
9: Compute dCH(PT, PS ∗M)

10: Use dCH to update M using the Adam optimizer
11: if dCH has not decreased for ITi/2 iterations then
12: Stop and increment Np

13: else
14: Continue
15: if Es <= α1 or NP incremented i times then
16: Stop
17: else
18: Continue

Also during early experimentation, we observed that, even though the
desired maximum surface error α1 was not reached, in some cases, the resulting

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 42

mesh still had a good visual quality. However, using a more relaxed α1, we may
interrupt the optimization procedure on instances that could still improve. In
this context, we implemented one last validation step, in which we reject the
instances with final surface error greater than a minimum acceptance error α2,
and consider them as unique shapes, maintaining their original triangle mesh
on the final 3D CAD model. This last validation step is used to guarantee
the original mesh quality, avoiding misclassified meshes being accepted as
instances, while also avoiding unwanted deformations that could occur when
the optimization becomes trapped in a bad local minimum. We highlight that
the instance registration algorithm has full control over any surface error that
may result from the registration procedure, guaranteeing an upper bound on
any surface error introduced in the final 3D CAD model.

Once the complete optimization procedure is finished, and the instance
was accepted by the last validation step, M is able to transform the source
mesh S into the target mesh T . However, to obtain the final instancing matrix
that represents the input triangle mesh using the reference mesh, we need to
reverse the normalization performed in the preprocessing step. Defining the
inverse of the translation used to set the mesh’s center of mass on the origin
as T −1, the rotation obtained using the PCA orthonormal basis as Mev, and
the inverse matrix of the non-uniform scaling used to scale the vertices in the
range [−0.5, 0.5] as S−1, we obtain the final instancing matrix, Mfinal, using
the following Equation:

Mfinal = T −1 ∗Mev ∗ S−1 ∗M (4-5)

4.3
Experiments

To evaluate the proposed supervised framework, we used a real-world
3D CAD model (Figure 4.5) composed by 18851 triangle meshes labeled in 16
different reference types (Figure 4.6) as the dataset. We highlight that, even
though some reference meshes may look similar, we labeled them using the
restriction that an affine transformation is able to instantiate all meshes from
the same type using the reference mesh. In other words, a conic and toroid
meshes, for example, only differ by an affine transformation matrix if both
instance and reference mesh have proportional attributes, such as the radii.
By further analyzing Figure 4.6, we notice that the reference meshes present
symmetries, and, although the 3D shapes found on CAD models usually have
this characteristic, this is not related to our proposed solution, since we design
the framework to process any kind of geometry.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 43

Figure 4.5: Real-world 3D CAD model used as dataset to evaluate the proposed
supervised framework. The model is color-coded according to each mesh
reference type.

Figure 4.6: Visualization of the normalized reference meshes for each of the
16 reference types found on the dataset. These reference meshes represent
cylinder, box, semi-sphere, cones, and circular toroids with different attributes
proportions.

To measure the performance of our supervised solution, we implemented
two metrics to evaluate the classification step, the accuracy and the F1score,
detailed, respectively, in Equation 4-6, where J is the number of instances,
tj is the ground truth, and t̂j is the predicted reference type, and Equation
4-7, where TP is the true positives, FP is the false positives, and FN is the
false negatives. The accuracy is used to measure how the classification model
is generally performing, while the F1score is the harmonic mean between the
precision, which measures the quality of the classification model, and the recall,
which measures the quantity of the retrieved examples. The F1score can be
computed for each class individually, is in the [0, 1] range, and, as closer to 1,

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 44

the better.

Accuracy =
∑J

j=1 1(tj = t̂j)
J

. (4-6)

F1score = 2 ∗ TP

2 ∗ TP + FP + FN
. (4-7)

We also implemented two metrics to evaluate the quality of the optimized
CAD model, the mean surface error MeanEs, which measure the overall quality
of the CAD model with the instancing matrices estimated by the instance
registration, and standard deviation surface error, StdEs, which indicates how
the surface error is varying. We highlight that both MeanEs and StdEs are
scale invariant, since the instances’ surface errors are scale invariant.

4.3.1
Training the PointNet++

To execute the supervised framework on the dataset, first, we trained
the PointNet++ network using the reference types found on the dataset CAD
model. In order to train the network, we split each set of reference types evenly
into training, validation, and test sets, meaning that each reference type is
properly represented in each set. Observing Figure 4.7 we notice that our
dataset is unbalanced, which can worsen the classification results. To address
this issue, we used a data augmentation routine to balance the training set,
translating each triangle mesh to the origin and applying random uniform
scales, rotations, and translations. We performed the augmentation until the
set was balanced, containing 104 triangle meshes of each class.

Figure 4.7: Frequency of each reference type found in the dataset.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 45

Using this data augmentation routine, we ensure that the developed nor-
malization procedure makes our proposed supervised framework, especially
on the classification step, invariant to scale, rotation, and translation, by in-
creasing the amount of triangle meshes in each reference type set with different
transformations. We highlight that, although the normalization procedure min-
imizes such effect, or eliminates it, and the final training set contains sets of
duplicated normalized meshes, the obtained point clouds are different even for
identical meshes, since each of them was individually sampled using random
parameters.

After we performed the augmentation, and sampled uniformly point
clouds on each normalized mesh using the sampling described in Section
4.1, we trained the PointNet++ over 100 epochs with the cross entropy loss
function, using a learning rate of 1e− 3. It is worth mentioning that we used
an unbalanced validation set, since each reference type was evenly split into
training, validation, and test sets, and only the training set was balanced using
the augmentation routine. This is shown in Table 4.1, in which we observe that
reference type 1 has significantly more triangle meshes than the others.

Table 4.1: Number of triangle meshes of each reference type in the validation
set.

Reference type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of meshes 4151 25 109 758 131 72 219 162 75 189 79 158 45 24 37 44

Once the training was completed, we selected the epoch that obtained
the highest accuracy on the validation set, resulting in a classification accuracy
of 99.98% on the test set, and a F1score = 1.0 for almost all reference
types, with worst-case on type 6, which was 0.9931. These results show
that the classification step correctly classified most of the triangle meshes.
The augmentation routine was essential to such performance, especially if we
analyze the F1score. For comparison, when we trained the network using the
unbalanced training set, we obtained F1score < 1.0 for many reference types,
with a worst-case on type 2 being equal to 0.3333.

To further inspect the test set results, we computed the confusion matrix,
which summarizes the performance of the classification on each reference type.
Analyzing Table 4.2, we can observe that the PointNet++ predicted most of
the triangle meshes correctly, missing only one on reference type 8, which it
predicted as reference type 6, representing one false negative for shape class
8, and a false positive for shape class 6. We highlight that the last validation
step, using the final surface error, is designed to reject these misclassifications.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 46

Table 4.2: Confusion matrix of the classification results on the test set, with
the rows being the ground truth reference type and the columns the predicted
reference types. The zeros were omitted to improve clarity.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 4151
2 25
3 111
4 759
5 132
6 72
7 219
8 1 163
9 77
10 191
11 81
12 159
13 45
14 24
15 39
16 46

4.3.2
Results

In the experiments, we set the instance registration parameters as: desired
surface error for the optimization α1 = 1e − 3, minimum acceptance error
α2 = 5e−3, outer and inner loop maximum iterations ITo = 40 and ITi = 200
respectively, initial point cloud density Np = 2048, incremented by 2048 for a
maximum of times i = 4, and the Adam optimizer learning rate to 1e − 3. It
is worth mentioning that both α1 and α2 represents a percentage error on the
geometry metrics. These parameters were fine-tuned to obtain a good visual
quality on the optimized model. After training the PointNet++ and setting the
optimization constants, we optimize the 3D CAD model previously described
using the proposed supervised framework, obtaining MeanEs = 0.0003 and
StdEs = 0.0009.

We highlight that all instances with Es > 5e − 3 were rejected, and the
original triangle mesh was maintained in the model. Using this last validation
step, we avoided any misclassifications and deformations that could derive
from a sub-optimal instancing matrix. The optimized model obtained using the
proposed framework, shown in Figure 4.8, requires only 2.61% of the original
model size. It is also worth mentioning that, with further inspection, no visual
difference is perceived between the original model, shown in Figure 4.5 and
the optimized one.

To compare how the proposed framework relates with previous methods,
first, we optimized the same CAD model using the shape matching approach

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 47

Figure 4.8: Optimized CAD model obtained using the proposed supervised
framework. The optimized model has only 2.61% of the original model size,
and has a MeanEs = 0.0003, with a StdEs = 0.0009. The model is color-coded
according to each mesh reference type.

developed by Santos & Celes Filho, 2014, obtaining a memory reduction of
97.40%, a very similar memory reduction that was obtained using our proposed
framework (97.39%). By further inspecting the optimized CAD model, we
observed that all triangle mesh instances found by both techniques had
equal vertices incidence order and surface triangulation. This first comparison
demonstrates that on Santos & Celes Filho, 2014, best-case scenario, our
framework has an equivalent performance.

Aiming to compare our framework with Santos & Celes Filho, 2014,
worst-case scenario, where the vertex and triangulation correspondence are not
found on triangle meshes, we randomly shuffled the vertices and triangulation
of the meshes. Considering the mesh representation as a vector of vertices and
a vector of elements, we shuffled the vector of vertices and updated the vector
of elements to the new corresponding vertices indexes. Note that this is a
possible scenario, since the CAD modeling is human and software dependent.
After optimizing this shuffled CAD model, we obtained the same results using
our proposed framework, 97.39% of memory reduction with MeanEs = 0.0003
and StdEs = 0.0009, while using Santos & Celes Filho, 2014, approach, since it
heavily depends on the meshes topology, we obtained only a 0.12% of memory
reduction. This second experiment shows that our proposed framework is
capable of optimizing a greater diversity of repeated meshes in CAD models.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 48

4.3.2.1
Instance Registration Results

Furthermore, to compare how our instance registration procedure relates
to previous methods, we conducted three other experiments. The results are
summarized in Table 4.3. In the first experiment, we replaced our instance
registration with the SICP (Du et al., 2010) registration, running it for 1000
iterations with point clouds containing 8192 points, which is the highest density
used in previous experiments. In the second experiment, we replaced only the
Adam optimizer with Chamfer distance by the SICP registration, executing
the optimization procedure with the same parameters used before. In the third
experiment, we replaced our instance registration only by the Adam optimizer
with Chamfer distance, executing it with point clouds containing 8192 points
until the Chamfer distance stopped decreasing or α1 was reached. For better
comparison with our instance registration, we only executed these previous
approaches for meshes that have Es > α1 after the normalization, and also
used the PCA approach to initialize the instancing matrix.

Analyzing Table 4.3, we can observe that using 5e − 3 as the minimum
acceptance error, the memory reduction using all the approaches was similar,
but, using a more strict threshold, 1e−3, our instance registration outperforms
the other approaches and still maintains a significant memory reduction. This
result is directly related to the number of instanced meshes with surface error
Es ≤ 0.001, showing that our approach optimized more triangle meshes below
the optimization goal α1 = 1e− 3

We also observe that the average time spent to estimate the instance
matrix was smaller when compared to the other approaches, especially the
SCIP registration. Note that all registration approaches can optimize each
instance in parallel, since they are optimized independently from each other.
It is also worth mentioning that we considered the computational time spent
to execute all the framework steps, since the time spent on the other steps (351
milliseconds) was significantly smaller than the time spent in the registration
step.

When comparing the MeanEs and the StdEs in Table 4.3, we notice
that our instance registration loops improved the registration quality in both
SICP and Adam with Chamfer distance approaches. This result is directly
related to the decrease in the number of meshes with Es > 0.001. We also
notice that, when combined with the SICP approach, our instance registration
loops slightly increased the number of meshes with Es > 0.005. This happens
because executing the SICP on point clouds that have smaller densities on
earlier iterations can lead to an undesired registration that may not be reversed

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 49

by later iterations on more dense point clouds.
Moreover, by further inspecting the impacts our instance registration

loops had in both SICP and Adam with Chamfer distance approaches, we
observe that in the Adam the average time decreased, while it increased in
the SICP. This occurs because the Adam optimizer is an adaptive approach
to perform the gradient descent and take advantage of the adaptive sampling
performed by our instance registration loops, while the SICP registration does
constant steps, executing more iterations to achieve a desired surface error
when combined with the adaptive sampling.

Table 4.3: Performance comparison of the supervised framework using differ-
ent registration approaches: the SICP, the SICP with our instance registration
optimization loops, the Adam optimizer with dCH , and the proposed instance
registration (IR). These results demonstrate that the proposed instance regis-
tration procedure, with less computational time, obtains meshes with greater
quality, in a more consistent way, which translates into a better overall memory
reduction. Note that meshes with Es > 0.001 also have Es > 0.005.

SICP
IR loops

with SICP
Adam with

dCH

Our
IR

Mem. Red.
α2 ≤ 0.005

97.20% 97.08% 97.39% 97.39%

Mem. Red.
α2 ≤ 0.001

69.77% 88.14% 93.82% 97.16%

MeanEs 0.0010 0.0007 0.0003 0.0003
StdEs 0.0026 0.0023 0.0010 0.0009

Avg. Time per
Mesh (sec)

62.64 166.77 13.65 8.66

Meshes
Es ≤ 0.001

12625 16590 17968 18697

Meshes
Es > 0.001

6226 2261 883 154

Meshes
Es > 0.005

141 218 2 2

4.3.2.2
Rendering Performance

To measure the rendering performance of the optimized CAD model
obtained using our supervised framework, we measured the frames per second
(FPS) using three different approaches on a desktop PC with an Intel Core i7

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 50

3.20GHz with 6-core processor, 32GB of RAM and an NVIDIA GeForce GTX
1070 8GB graphics card. In the first approach, we used a single draw call to
render all the meshes of CAD model, obtaining an FPS of approximately 2000.
Although using this approach, we obtain a high rendering performance; it is
limited by the graphics card memory, meaning that it is only feasible when
the model fits entirely on the graphics card memory. In the second approach,
we individually rendered the meshes of the CAD model, obtaining an FPS
of approximately 10. This approach presents a different limitation: the CPU
becoming a bottleneck with rendering API function call overhead.

For the last approach, we implemented the same instancing technique
as Santos & Celes Filho, 2014, obtaining an FPS of approximately 1000. This
technique perfectly fits our framework, since affine transformation matrices are
computed, which enables the instantiation of several components that share the
same triangle mesh with a single draw call. We highlight that this approach
addresses the drawbacks observed in the previous ones, since only a small
number of triangle meshes are stored on the graphics card memory, and also
only a few API function calls are executed using the hardware-accelerated
instance rendering API (Pharr & Fernando, 2005), avoiding the function call
overhead.

4.3.2.3
Results Using Another CAD model

Figure 4.9: 3D CAD model with 74549 unlabeled triangle meshes.

Finally, we performed one last experiment to evaluate how the supervised
framework would perform on a different CAD model than the one used to train
the PointNet++. To do so, we used a CAD model that contains 74549 triangle

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 51

meshes without any labeling information, shown in Figure 4.9, and obtained
a memory reduction of 64.40%, with MeanEs = 0.0117. By further analyzing
the obtained result, we observed that the previous known reference meshes
could not represent with a desired accuracy some of the triangle meshes found
in this CAD model. This lack of similarity between the reference meshes and
the CAD model triangle meshes decreases the classification performance and,
as a consequence, worse registrations are produced, which increase the surface
error while decreasing the memory reduction.

This result shows that the supervised approach depends on a previous
knowledge about the 3D CAD model, since the PointNet++ needs to be
trained to correctly classify the triangle meshes. Without previous information
about the model, the framework may not find a sufficiently similar reference
mesh, restraining the instance registration to go beyond a certain error
threshold. This lack of similarity is illustrated by Figure 4.10, in which a
rectangular toroid triangle mesh was misclassified as a circular toroid, since
there is no rectangular toroid among the reference meshes. We can also observe
that the instance registration obtained a good instancing matrix, and even
though the output looks similar, their surfaces do not match, and the surface
error is high.

Figure 4.10: Example of a rectangular toroid misclassified as a circular toroid
due to the lack of similarity between the input triangle mesh and the reference
meshes. This instance is rejected by the framework, since the surface error is
greater than 5e− 3.

4.3.3
Discussion

The proposed framework, as shown in Section 4.3.2 in the shuffled CAD
model experiment, by relying on uniformly sampled point clouds to identify
similar triangle meshes in the CAD model, and also to estimate an affine
transformation matrix to instantiate them, indeed does not depend on the
vertices incidence order and mesh topology. We highlight that the topology,

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 52

and some details, of the original triangle mesh may not be preserved when
a reference mesh, followed by an instancing matrix, is used. However, we are
interested in preserving the visual appearance of the original mesh, since it
is more relevant than the topology in the CAD visualization domain. Our
proposed framework achieve this by employing dense point clouds, which avoid
loss of details, and a last validation step, which guarantees an upper bound on
the surface errors, ensuring that the final instancing is visually similar to the
original.

The framework takes advantage of the PointNet++ robustness to achieve
high classification performance. This is essential to prevent the execution of
the instance registration with triangle meshes that are not similar, minimizing
the computational time spent in the CAD model optimization. In Table 4.3, we
can observe that the average time spent on each triangle mesh is reasonable;
however, performing a pairwise registration, and choosing the one with the best
surface error to represent the original mesh, can become unfeasible for CAD
models composed by thousands of triangle meshes. Although misclassifications
may be obtained by the PointNet++, they were identified, and the original
triangle mesh was maintained in the optimized model.

We also highlight that, even though most of the experiments were
performed with a single CAD model, the optimization performed by the
framework processes each triangle mesh individually, and, since the CAD
model is composed by 18851 triangle meshes labeled in 16 reference types, the
obtained results provide strong evidence that the proposed approach is capable
of generalizing to diverse triangle mesh with different transformations.

Last but not least, initializing the instancing matrix using the PCA
orthonormal basis combination, described in Equation 4-4, greatly improved
the final registration results. To support this, we optimized the dataset CAD
model using three different matrix initialization strategies, the identity matrix,
a random matrix, and the PCAINIT matrix, summarizing the obtained results
in Table 4.4.

Analyzing Table 4.4, we observe that the final registration results were
significantly improved by the PCA initialization strategy. The decrease in
the mean surface error and standard deviation is an evidence of that fact,
since it can be interpreted as better detail preservation. Moreover, the average
time spent on each triangle mesh also decreased when compared to the other
initialization strategies. This derives from the fact that the PCA strategy tends
to obtain a better starting point to the instance registration procedure, being
closer to the desired registration, which makes the optimization susceptible to
local minima. We highlight that, even though the PCA orthonormal basis is

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 4. Supervised Shape Instance Matching Framework 53

not unique for one same reference mesh, and may be off by 180-degree rotation,
this was not a major issue, and the registration procedure was able to converge.
We can observe this in Figure 4.8, where even in triangle meshes that does not
have a lot of symmetry, such as the purple circular toroids, we obtained visually
accurate registration results.

Table 4.4: Optimization results obtained initializing the instancing matrix
using the identity matrix, a random matrix, and the PCAINIT matrix. These
results demonstrate that the PCA initialization strategy greatly improved the
final mesh quality, decreasing both MeanEs and StdEs, while also decreasing
the average time spent on each triangle mesh.

Initialization
Strategy

MeanEs StdEs

Average Time
per Mesh (sec)

Identity 0.0098 0.0266 16.50
Random 0.0048 0.0186 11.21

PCAINIT 0.0003 0.0009 8.66

We highlight that, relying only on the PCA alignment strategy is not
enough to obtain a final accurate representation. The PCA eigenvectors may
not produce a perfect alignment when considering the reference mesh and the
normalized input mesh, since small non-uniform scaling along the geometries
axes may result in eigenvectors that have small deviations. This small deviation
can lead to a significant deformation when the scale normalization is reversed
for the final instantiation. As a comparison, we optimized the CAD model
described in Section 4.3, using only the PCA initialization described in
Equation 4.3.2.1 as the estimated registration, obtaining 6656 meshes with
Es > 0.005, and a memory reduction of 68.02% (using α2 ≤ 0.005), a
significantly worse result when compared to the results presented in Section
4.3.2.1. This results shows that it is important to perform a registration
procedure after the PCA initialization strategy.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

5
Self-Supervised Shape Instance Matching Framework

In this Chapter, we detail the proposed self-supervised framework for
the shape matching problem on 3D CAD models, present some results and
discuss them. Our objective is to overcome the main drawback of the supervised
framework: the high dependency on previous knowledge about the 3D CAD
model, which we observe in Section 4.3.2.3, while preserving the previous
advantages of the framework. To address this issue, we modified the framework
described in Chapter 4, replacing the supervised classification step with an
self-supervised clustering approach, obtaining the self-supervised framework
visualized in Figure 5.1. First, the framework preprocesses all the meshes of
a CAD model, obtaining point clouds for each one of them. Next, the point
clouds are grouped using the self-supervised clustering step, and a reference
mesh is selected for each cluster. Finally, an affine transformation is estimated
between each triangle mesh of the CAD model and the cluster reference mesh.

Figure 5.1: Overview of the proposed self-supervised framework, in which the
classification was replaced with an self-supervised clustering step.

The new self-supervised clustering has two main steps. First, we obtain

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 55

feature vectors for the 3D CAD model meshes, using the PointNet++ (Qi et
al., 2017b) encoder, trained using the autoencoder illustrated in Figure 5.2.
Second, we cluster the meshes using the obtained feature vectors. The autoen-
coder, first, encodes the uniformly sampled point clouds of the preprocessing
step, using the PointNet++ encoder, into a 1024-dimensional feature vector,
which is used by a decoder composed by two fully connected layers, with the
first one having batch normalization (Ioffe & Szegedy, 2015) and ReLU acti-
vation, to reconstruct the input point cloud. We highlight that we used the
1024-dimensional feature vector already implemeted by PointNet++ encoder
architecture, and feature vectors with different dimensions could also be used.

Figure 5.2: Visualization of the autoencoder based on the PointNet++.

To extract feature vectors for the 3D CAD model meshes, we trained the
described autoencoder using a variety of shapes found on 3D CAD models,
using the Adam optimizer (Kingma & Ba, 2014) and the averaged Chamfer
distance as cost function:

daCH(X, Y) =
∑

x∈X miny∈Y ||x− y||22
NX

+
∑

y∈Y minx∈X ||x− y||22
NY

(5-1)

where X, Y, NX , NY are, respectively, the input and reconstructed point clouds,
and its respective number of points. Once the training was finished, the encoder
is able to meaningfully represent the input point cloud with a 1024-dimensional
feature vector, which the decoder uses to reconstruct the input point cloud.

This feature vector is then extracted for the 3D CAD model meshes and
used to cluster them. To cluster the triangle meshes, we experimented with
two different approaches: K-Means|| (Bahmani et al., 2012) and HDBSCAN
(Campello et al., 2013), described in Section 3.3. We chose the K-Means||
algorithm due to its simplicity and popularity, and the HDBSCAN because,
as shown by Campello et al., 2013, it was able to outperform previous density-
based clustering solutions.

In the K-Means||, although some approaches were developed to estimate
the desired number of cluster K, as mentioned in Section 3.3.1, in our domain,

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 56

we can estimate K as a target percentage of the number of reference meshes
that we want to maintain on the 3D CAD model. On the other hand, for
the HDBSCAN, we just need to set mpts, which is the number of points in
the neighborhood of a point to consider it a core point (including itself). We
highlight that, using the HDBSCAN, some triangle meshes may be considered
noise, meaning that they are not assigned to any cluster. In our case, they were
considered as unique and maintained in 3D CAD model. In section 5.1.2, we
further discuss on the results obtained with each clustering technique.

After clustering the 3D CAD model meshes, one reference mesh is selected
for each cluster. When the K-Means|| is used, we select as reference mesh the
mesh that has its feature vector closest to the cluster centroid, while with the
HDBSCAN, we select the one that has greater strength membership. Once the
reference mesh for each cluster is selected, the instance registration described
in Section 4.2 is executed for each mesh on the 3D CAD model. We highlight
that, for implementation purposes, we avoided the squared root computations
in the Chamfer (pseudo) distance dCH , using it as:

dCH =
∑
x∈X

min
y∈Y
||x− y||22 +

∑
y∈Y

min
x∈X
||x− y||22 (5-2)

During early experimentation, we observed that the surface error, de-
scribed in Equation 4-2, may accept meshes that are not completely similar,
due to asymmetry: it measures only the mean distance from the target shape
point cloud to the reference mesh transformed by the registration matrix. This
asymmetric measurement ensures that the target shape is covered by the ref-
erence one, but not the other way around. This way, some details can be lost,
as shown in Figure 5.3, where a doorway is missing.

To address this issue, we modified the instance registration procedure,
replacing the asymmetric surface error Es with a symmetric one, shown in
Equation 5-3. In this Equation, SymEs is the symmetric error, T is the
target mesh that we are trying to instantiate, S ∗ M is the reference mesh
transformed by the registration matrix, and PT and PSM are point clouds
sampled, respectively, on the target mesh and reference mesh transformed by
the registration matrix.

SymEs(T ,S ∗M) = max(Es(PT ,S ∗M), Es(PSM , T)) (5-3)
Finally, we also modified the last validation step to make it more rigid,

ensuring that the final instancing matrix accurately represents the original
mesh. To achieve this, in addition to verifying only if the symmetric surface
error is below an acceptance threshold αSym, we also implemented two other
metrics: the maximum difference and the area surface error. In the maximum

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 57

Figure 5.3: Example of a missing doorway, with the original model in gray
and the optimized in green. The plane with the doorway is the target, and is
covered by the plane that does not have the doorway, but not the other way
around.

difference, we verify if the maximum distance from PT and PSM to, respectively,
S ∗M and T is below a maximum threshold αmd. In the area surface error, we
verify if the difference between the final surface area of the original mesh and
the instantiated one is below an area threshold αA.

Using these three metrics combined, we guarantee that the instance is
similar to the original mesh, with the original mesh details and the intrinsic
characteristics, such as surface area, preserved. Once the complete framework
is executed for each mesh on the 3D CAD model, the meshes that had
their registration accepted are inserted into the model as instances, while the
rejected ones are maintained as unique meshes.

5.1
Experiments

To evaluate the proposed self-supervised framework, we used two different
real-world datasets. The first one is the same labeled CAD model described
in Section 4.3; however, since our approach is self-supervised, the labeling
information was not considered for any training loss computation during the
training stage. The second dataset is a collection of 5 different 3D CAD models,
visualized in Figure 5.4, containing a total of 61561 geometries without any
label information. This dataset has a wider variety of triangle meshes, which

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 58

would make the labeling task complex and time-consuming, posing a bigger
challenge for the supervised approach. In Figure 5.5, we can observe some of
the triangle meshes found in the dataset. To facilitate reading, we will refer to
the first dataset as labeled dataset, and the second one as unlabeled dataset.

To measure the point cloud reconstruction quality of the implemented
autoencoder, which also indicates the encoder capability of computing feature
vectors that meaningfully represent the data, inspired by Bachmann et al.,
2021, we used the averaged Chamfer distance, described in Equation 5-1.
Similar to presented in Chapter 4, we used the mean symmetric surface error
and standard deviation to measure the quality of the instanced meshes. Finally,
to measure the clustering performance, we used the memory reduction of the
self-supervised framework itself, since the clusters quality is directly related to
the final optimization quality. We highlight that, even though the clustering
algorithm may obtain clusters that have similar meshes but present small
differences, e.g. a plane and another plane with a small hole, the last validation
step is designed to identify these cases, rejecting the instance and maintaining
the original mesh in the final 3D CAD model.

5.1.1
Training the Autoencoder

To execute the self-supervised framework on the datasets, first, we trained
the autoencoder separately for each one. For the labeled dataset, we used the
same train, validation, and test sets obtained in Section 4.3.1; however, in self-
supervised tasks, the dataset is usually split into train and test sets, so we
merged the train and validation sets. We highlight that, although the dataset
is unbalanced, we did not perform any type of data augmentation, since, in an
unlabeled dataset we would not correctly balance the data. Next, we trained
the autoencoder for 100 epochs, using the Adam optimizer with a learning
rate of 1e− 3. Then, we selected the epoch with the best mean reconstruction
quality in the merged training set, which was 1e− 4, translating into a mean
reconstruction quality also of 1e− 4 in the test set. These results indicate that
the encoder was able to obtain feature vectors that meaningfully represent the
triangle meshes for the labeled dataset.

For the unlabeled dataset, first, we randomly split each 3D CAD model
in the dataset into two halves, and considered just the first half during the
training and evaluation of the autoencoder. We chose to split the models first,
using a 50%/50% ratio to ensure that the triangle meshes used to train the
autoencoder do not impact in the clustering and registration steps. Then,
we randomly split each CAD model first half into train and test sets using a

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 59

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5

Figure 5.4: Visualization of the 3D CAD models found in the unlabeled dataset.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 60

Figure 5.5: Example of complex triangle meshes (not parametric surfaces)
found in the unlabeled dataset. The triangle meshes are highlighted in blue
and green.

90%/10% ratio. After all the models were split, we grouped their train and test
sets, so that each model is represented in the sets used to train and evaluate the
autoencoder. Once the dataset was split, we trained the autoconder using the
same parameters of the first dataset, and also selected the epoch with the best
mean reconstruction quality for the validation set, 1e−5, which translated into
a mean reconstruction quality in the test set also of 1e− 5. These results also
indicate that the encoder was able to obtain feature vectors that meaningfully
represent the triangle meshes for the unlabeled dataset.

5.1.2
Results

In the experiments, we used the same optimization parameters described
in Section 4.3.2. We fine-tuned the last validation metrics, obtaining αSym =
0.05, αmd = 0.07 and αA = 0.01. It is worth mentioning that both αSym and
αmd represents a percentage error on the geometry metrics, and αA is in squared
meters. Using these values, we were able to obtain visually accurate results after
executing the framework in both datasets, avoiding the asymmetric errors, as
shown in Figure 5.6.

To select the clustering parameter K for the K-Means||, we empirically
used 5% of the total number of meshes in the CAD model as the target
of the number of meshes that should maintained on the model. Using this
parameter, we set an upper bound of 95% on the redundancy removal, since
we have at least 5% of the model’s meshes on the final optimized model. For
the HDBSCAN clustering, since we want to minimize the number of meshes
considered as outliers, which are directly considered as unique meshes on the
model, we set mpts = 2. This way, a pair of meshes are already considered a
cluster, and the redundancy removal may occur.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 61

(a) Original (b) Optimized

Figure 5.6: Second half of the unlabeled dataset’s Model 2. In (b), the accepted
meshes are green, and the rejected ones are red. We can observe that, using the
new validation metrics, the asymmetric errors were avoided, and the doorway
was maintained in the final optimized model.

5.1.2.1
Results in the labeled dataset

Using the metric thresholds and clustering parameters set, we executed
the self-supervised framework using the antoencoder trained for the labeled
dataset to optimize its test set. When using the K-Means|| clustering, we were
able to obtain a memory reduction of 83.93% with a mean SymEs = 0.0077
and 0.0031 of standard deviation on the accepted instances, while using the
HDBSCAN we obtained a 76.90% with a mean SymEs = 0.0075 and 0.0033
of standard deviation on the accepted instances. These results indicate that
the accepted instances did not impact the model quality, as shown in Figure
5.7, while also removing a significant amount of redundant information on the
model.

(a) Original (b) Optimized

Figure 5.7: Test set of the labeled dataset. In (b), the accepted meshes are
green, and the rejected ones are red.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 62

For comparison, we optimized the test set of the labeled dataset using
the supervised framework, with the modified instance registration and last
validation step. Using this strategy, we obtained a memory reduction of 97.03%,
with a mean SymEs = 0.0003 and 0.0005 of standard deviation on the accepted
instances. These results show how powerful a supervised solution can be,
obtaining a better redundancy removal, and, as the reference mesh selection
is also better, the instance quality also improves. We also optimized this test
set using the Santos & Celes Filho, 2014, solution, which also does not require
any previous knowledge of the model, obtaining a memory reduction of 97.14%,
which is very similar to the supervised solution. These results show that, when
the labeling information is available, and also the model is composed mostly
of meshes similar to parametric geometries, the supervised and Santos & Celes
Filho, 2014, approaches were able to outperform our self-supervised framework.

5.1.2.2
Results in the unlabeled dataset

After experimenting on the labeled dataset, using the autoencoder
trained for all the models on the unlabeled dataset, we executed the self-
supervised framework, with both K-Means|| and HDBSCAN clustering, to op-
timize the halves of the 5 models that were not used during the training phase.
With the K-Means||, we obtained a mean SymEs = 0.0039 with mean stan-
dard deviation of 0.0040, and, with the HDBSCAN, a mean SymEs = 0.0041
with mean standard deviation of 0.0041 on the accepted instances. These re-
sults indicate that, using both clustering techniques, we were able to maintain
the overall model visual quality, observed in Figures 5.8 and 5.9.

We further compare our results on memory reduction with the unsuper-
vised solution of Santos & Celes Filho, 2014, which are summarized in Table
5.1. We can observe that, in the models in which our solution obtained better
memory reduction than Santos & Celes Filho, 2014, we were able to obtain
significant improvement over the previous unsupervised solution, and, when we
were outperformed, we still were able to obtain a significant amount of mem-
ory reduction. By further inspecting the CAD models which Santos & Celes
Filho, 2014, obtained a better memory reduction, we observed that the CAD
model is composed mostly of meshes similar to parametric geometries. This
result demonstrates that, when the CAD model is composed of more complex
geometries, as shown in Figure 5.10, we were able to outperform the previous
unsupervised approach on average.

Furthermore, we highlight that our approach with the K-Means|| clus-
tering was able to obtain better average results than with the HDBSCAN.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 63

(a) Original (b) Optimized

Figure 5.8: Second half of the unlabeled dataset’s Model 1. In (b), the accepted
meshes are green, and the rejected ones are red.

Table 5.1: Comparison of the memory reduction between the self-supervised
framework with HDBSCAN and K-Means|| and the Santos & Celes Filho,
2014, approach.

Ours with
HDBSCAN

Ours with
K-Means||

Santos & Celes
Filho, 2014

Model 1 76.08% 76.58% 51.89%
Model 2 73.54% 78.32% 65.66%
Model 3 80.75% 80.71% 72.29%
Model 4 67.94% 70.31% 82.15%
Model 5 70.81% 82.25% 88.09%
Average 73.82% 77.63% 72.01%

This result is consistent with the observation made by Caron et al., 2018, that
"some amount of oversegmentation is beneficial". In fact, as shown in Table
5.2, we observe that, except on Model 1, more clusters were obtained using
the approach with K-Means||, and, once the similar meshes may be divided
into more clusters, the reference mesh selection may be better to instantiate
the other meshes in the cluster, due to the rotational ambiguities found on the
PCA alignment (Crespo & Aguiar, 2011).

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 64

(a) Original Model 3 (b) Optimized Model 3

(c) Original Model 4 (d) Optimized Model 4

(e) Original Model 5 (f) Optimized Model 5

Figure 5.9: Second half of the unlabeled dataset’s Model 3, 4, and 5. In (b),
(d), and (f), the accepted meshes are green, and the rejected ones are red.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 65

(a) (b)

(c) (d)

Figure 5.10: Example of some complex geometries that we were able to
optimize with the self-supervised framework. In (a) and (c), the input triangle
meshes are highlighted in green and blue. In (b) and (d), we observe that the
corresponding instance mesh was optimized and accepted (green) by the last
validation step.

Table 5.2: Comparison of the number of clusters obtained on each model
between the HDBSCAN and K-Means|| clustering algorithms.

Meshes K-Means|| HDBSCAN
Model 1 1581 79 97
Model 2 2598 129 55
Model 3 10332 516 204
Model 4 11323 566 369
Model 5 4947 247 182

5.1.2.3
Rendering performance

Finally, we compare the rendering performance between the models opti-
mized by the self-supervised framework with both K-Means|| and HDBSCAN.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 66

Table 5.3: Comparison of rendering performance between the optimized models
by the self-supervised framework with HDBSCAN and K-Means|| clustering
algorithms. The total number of meshes in the optimized model is the combina-
tion of the reference meshes and the unique meshes found by our self-supervised
framework.

K-Means|| HDBSCAN
Total Meshes FPS Total Meshes FPS

Model 1 386 57 442 49
Model 2 362 60 468 44
Model 3 1805 12 1883 11
Model 4 3435 06 3404 06
Model 5 779 27 1083 20

To do so, we measured the frames per second (FPS) on each CAD model of the
unlabeled dataset using a desktop PC with an Intel Core i7 3.20GHz with 6-
core processor, 32GB of RAM and a NVIDIA GeForce GTX 1070 8GB graphics
card, with the instancing technique described by Santos & Celes Filho, 2014.

Analyzing Table 5.3, we can observe that, in almost all models optimized
using the K-Means|| clustering, a smaller amount of meshes were required
to represent the original model than the HDBSCAN. This result directly
translates into a slightly better FPS performance on the K-Means|| models
than the HDBSCAN ones, since one draw call is executed for each one of the
reference and unique meshes.

5.1.3
Discussion

Using the proposed self-supervised framework, as demonstrated in our ex-
periments, we indeed overcame the major drawback of the supervised solution.
By relying on an self-supervised clustering approach, no previous knowledge
about the model is required. To perform the self-supervised clustering, the
framework takes advantage of the PointNet++ encoder robustness to obtain
meaningful feature vectors for the triangle meshes in the CAD model.

The framework also takes advantage of previous well-known clustering
algorithms, K-Means|| and HDBSCAN, to group the triangle meshes using
the feature vectors extracted with the PointNet++ encoder. This is essential
to obtain clusters that contain similar meshes, while maintaining different
meshes in separated clusters. Moreover, when comparing the results obtained,
we noticed a better model optimization with the K-Means|| clustering than
the HDBSCAN. Indeed, analyzing Tables 5.2 and 5.3, we observe that, even

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 5. Self-Supervised Shape Instance Matching Framework 67

though the K-Means|| resulted in more clusters, the total amount of meshes on
the final model was smaller than the HDBSCAN. These results indicate that
the clusters obtained by the K-Means|| had a better quality than the ones
obtained by the HDBSCAN.

Furthermore, we improved the instance registration step, using a sym-
metric error to obtain the instancing matrix and using more metrics to measure
the quality of the instanced mesh. Improving the registration, as shown in Sec-
tion 5.1.2, we avoided asymmetric errors that could derive from the previous
strategy used in the supervised framework. We highlight that, when we op-
timized the labeled dataset, using the previous supervised solution with the
improved validation step, we obtained very similar memory reduction and sur-
face quality to the ones detailed in Section 4.3.2. These results confirm that the
supervised solution, even though relying on an asymmetric quality measure,
was able to obtain good optimization results.

When comparing the results obtained on the labeled dataset between
the supervised and self-supervised frameworks, we observe that the supervised
removed more redundant information than the self-supervised one, while also
obtaining better quality on the instanced meshes. This result shows that the
supervised approach correctly identified more triangle meshes as instances from
one another, and, as the reference mesh selection is also better, the quality of
the instanced triangle meshes improves.

Finally, when comparing the results obtained on the unlabeled dataset
between our self-supervised framework and a previous unsupervised approach,
we observe that our framework removed more redundant information on
the models on average, outperforming the previous approach. This result
demonstrates the effectiveness of the proposed framework, especially when the
CAD models are composed of meshes with more complexity (different from
parametric geometries).

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

6
Conclusions

The efficient representation of a CAD model is an important field of
research, especially due to the recent popularization of methodologies that
relies on CAD models to improve the engineering process. Previous research
has proposed a CAD model optimization that minimizes the representation
redundancy commonly found in 3D CAD models; however, it has major
drawbacks: high dependency on the triangle mesh topology and vertices
incidence order.

With the recent advances in the deep learning field of research, several
geometric tasks, such as shape and point cloud registration, significantly
improved. Previous deep learning approaches could be adapted to minimize the
CAD models’ redundant information; however, they also have some drawbacks:
being limited to primitive geometries, obtaining transformations not well-
suited for the 3D CAD visualization domain, and not considering the non-
uniform scale commonly found on the CAD domain.

In this work, we proposed a supervised and a self-supervised framework
that minimizes the CAD models’ redundant information, finding instances of
repeated triangle meshes and computing an instancing matrix between them.
Both frameworks, by relying on point clouds uniformly sampled on generic
meshes’ surfaces, overcome most of the previous drawbacks, being independent
of the mesh topology and vertex order while also generalizing for any kind of
geometry.

Furthermore, both frameworks perform an instance registration step that
relies on the PCA method and the Adam optimizer with Chamfer distance as a
cost function to estimate an affine transformation matrix between two meshes.
The estimated affine transformation considers the non-uniform scale between
the triangle meshes and is well suited for the 3D CAD visualization domain.
We highlight that the instance registration has full control over the final surface
error, guaranteeing an upper bound on any surface error that the optimization
procedure may introduce.

The proposed supervised framework takes advantage of the PointNet++
classification network to identify instances of repeated triangle meshes ac-
curately and performs the instance registration to obtain an optimal affine

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 6. Conclusions 69

transformation between them. Using the proposed supervised framework, we
optimized a 3D CAD model to 2.61% of its original size while preserving the
original triangle meshes visual quality.

When compared to previous method, the proposed supervised frame-
work obtained similar results; however, for the previous method’s worst-case
scenario, the proposed supervised framework obtained significantly better re-
sults. We also demonstrated that the developed instance registration procedure
achieves a lower surface error while also performing faster than previous ap-
proaches that also consider non-uniform scaling.

The proposed self-supervised framework leverages the robustness of the
PointNet++ encoder to obtain feature vectors that meaningfully represent
the CAD model triangle meshes. Then, using these feature vectors, clustering
algorithms are executed to group the triangle meshes. After that, each group
of triangle meshes is optimized using the instance registration step. Using this
self-supervised clustering approach, the proposed self-supervised framework
overcomes the main drawback found on the supervised framework: the high
dependency on a previous knowledge about the 3D CAD model.

When compared to the supervised framework, the self-supervised ob-
tained a smaller but still significant memory reduction. Moreover, when com-
pared to previous unsupervised method, using an unlabeled dataset composed
by more complex geometries, the self-supervised framework outperformed the
previous unsupervised method by a maximum of 24.69%, and 5.62% on aver-
age. These results demonstrate the effectiveness of the proposed solution.

6.1
Future Work

Since recent CAD models contain several triangle meshes that cannot
be represented by a primitive geometry, and labeling those meshes could be a
time-consuming task, we point out some suggestions for future work:

– Autoencoder improvement. More recent autoencoder architectures,
such as variational autoencoders and adversarial autoencoders, could be
used to improve the feature vectors extracted from point clouds, as shown
by Zamorski et al., 2020. Obtaining better feature vectors can directly
impact the CAD model optimization since clusters with better quality
could be achieved and, as a consequence, better registration results.

– Point cloud distance function improvement. Choosing a good met-
ric to measure the discrepancy between point clouds is an important step
to obtaining a good representation learning using neural networks (au-
toencoders included). Although the Chamfer distance is widely used in

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Chapter 6. Conclusions 70

point cloud analysis, since it is fast and differentiable (Fan et al., 2017),
other less favored distances have proven to obtain better results. Fan
et al., 2017 show that using the Earth Mover’s distance, they obtained
better point set generation results. However, the Earth Mover’s distance
has a high computational cost. Nguyen et al., 2021 show that using the
sliced Wasserstein distance, they obtained better feature vectors for the
point cloud representation while maintaining a computational cost close
to the Chamfer distance. Using this distance could improve the learn-
ing capabilities of the autoencoder and also improve the Adam-based
registration procedure, resulting in better CAD model optimization.

– Deep Clustering. Some research proposed the combination of the
network-specific loss, in our case the Chamfer distance, with a clustering
loss to obtain cluster-friendly features (Hassani & Haley, 2019; Song et
al., 2013). Usually, these methods have an upper bound on the number
of clusters that the trained network is able o obtain, which could be
an issue, since the number of clusters varies from one CAD model to
another. However, a CAD model partition strategy could be implemented
to ensure a good clustering. Moreover, the intra-cluster registration errors
could also be used as loss during the training phase. Using such strategy,
the network will be able to obtain clusters that directly minimize the
registration errors and maximize the redundancy removal.

– Primitive optimization. As discussed in Souza Moreira, 2015, the
primitive representation is more compact than the mesh one, and, by
adapting this generic-meshes solution to also be able to identify and
obtain the primitive parameters to instantiate the CAD model meshes,
we will be able to further improve the memory reduction. To achieve
this, the cluster’s reference mesh could be classified into previously
known primitives, and if a good enough score is obtained for a particular
primitive, the entire cluster could be considered as an instance of the
primitive, and their attributes could be estimated.

– Scanned point clouds. 3D CAD models are commonly updated to
match the modifications executed on the real industrial plant. During
this process, scanned point clouds may be used as the modeling technique
for new components. We encourage future research to apply the proposed
framework in order to obtain better CAD meshes to update the model.
In this case, the framework should be adapted to perform point cloud
segmentation, once the scanned point clouds usually are not segmented
into single geometries.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Bibliography

ACHLIOPTAS, PANOS; DIAMANTI, OLGA; MITLIAGKAS, IOANNIS;
GUIBAS, LEONIDAS. Learning representations and generative
models for 3d point clouds. International conference on machine
learning. PMLR. 2018, pp. 40–49.

ALT, HELMUT; MEHLHORN, KURT; WAGENER, HUBERT; WELZL,
EMO. Congruence, similarity, and symmetries of geometric ob-
jects. Discrete & Computational Geometry 3.3 (1988), pp. 237–256.

AOKI, YASUHIRO; GOFORTH, HUNTER; SRIVATSAN, RANGAPRASAD
ARUN; LUCEY, SIMON. Pointnetlk: Robust & efficient point
cloud registration using pointnet. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019,
pp. 7163–7172.

ARTHUR, DAVID; VASSILVITSKII, SERGEI. k-means++: The advan-
tages of careful seeding. Tech. rep. Stanford, 2006.

BACHMANN, JOËL; BLOMQVIST, KENNETH; FÖRSTER, JULIAN;
SIEGWART, ROLAND. Points2Vec: Unsupervised object-level
feature learning from point clouds. arXiv preprint arXiv:2102.04136
(2021).

BAHMANI, BAHMAN; MOSELEY, BENJAMIN; VATTANI, ANDREA; KU-
MAR, RAVI; VASSILVITSKII, SERGEI. Scalable k-means++. arXiv
preprint arXiv:1203.6402 (2012).

BALL, GEOFFREY H; HALL, DAVID J. A clustering technique for sum-
marizing multivariate data. Behavioral science 12.2 (1967), pp. 153–
155.

BELLO, SAIFULLAHI AMINU; YU, SHANGSHU; WANG, CHENG; ADAM,
JIBRIL MUHMMAD; LI, JONATHAN. Deep learning on 3D point
clouds. Remote Sensing 12.11 (2020), p. 1729.

BEN-SHABAT, YIZHAK; LINDENBAUM, MICHAEL; FISCHER, ANATH.
3d point cloud classification and segmentation using 3d modified
fisher vector representation for convolutional neural networks.
arXiv preprint arXiv:1711.08241 (2017).

BEN-SHABAT, YIZHAK; LINDENBAUM, MICHAEL; FISCHER, ANATH.
3dmfv: Three-dimensional point cloud classification in real-

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Bibliography 72

time using convolutional neural networks. IEEE Robotics and
Automation Letters 3.4 (2018), pp. 3145–3152.

BENGIO, YOSHUA; COURVILLE, AARON; VINCENT, PASCAL. Repre-
sentation learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence 35.8 (2013), pp. 1798–
1828.

BESL, PAUL J; MCKAY, NEIL D. Method for registration of 3-
D shapes. Sensor fusion IV: control paradigms and data structures.
Vol. 1611. International Society for Optics and Photonics. 1992, pp. 586–
606.

CAMPELLO, RICARDO JGB; MOULAVI, DAVOUD; SANDER, JÖRG.
Density-based clustering based on hierarchical density esti-
mates. Pacific-Asia conference on knowledge discovery and data mining.
Springer. 2013, pp. 160–172.

CARON, MATHILDE; BOJANOWSKI, PIOTR; JOULIN, ARMAND;
DOUZE, MATTHIJS. Deep clustering for unsupervised learn-
ing of visual features. Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 132–149.

CRESPO, JOAO BFP; AGUIAR, PEDRO MQ. Revisiting complex mo-
ments for 2-D shape representation and image normalization.
IEEE transactions on image processing 20.10 (2011), pp. 2896–2911.

DU, SHAOYI; ZHENG, NANNING; XIONG, LEI; YING, SHIHUI; XUE,
JIANRU. Scaling iterative closest point algorithm for registra-
tion of m–D point sets. Journal of Visual Communication and Image
Representation 21.5-6 (2010), pp. 442–452.

EASTMAN, CM; EASTMAN, C; TEICHOLZ, P; SACKS, R. BIM hand-
book: A guide to building information modeling for owners,
managers, designers, engineers and contractors. 2011.

EGGERT, DAVID W; LORUSSO, ADELE; FISHER, ROBERT B. Estimat-
ing 3-D rigid body transformations: a comparison of four major
algorithms. Machine vision and applications 9.5 (1997), pp. 272–290.

ESTER, MARTIN; KRIEGEL, HANS-PETER; SANDER, JÖRG; XU, XI-
AOWEI, et al. A density-based algorithm for discovering clusters
in large spatial databases with noise. kdd. Vol. 96. 34. 1996, pp. 226–
231.

FAN, HAOQIANG; SU, HAO; GUIBAS, LEONIDAS J. A point set gen-
eration network for 3d object reconstruction from a single im-
age. Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 605–613.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Bibliography 73

FRIEDRICH, MARKUS; ILLIUM, STEFFEN; FAYOLLE, PIERRE-ALAIN;
LINNHOFF-POPIEN, CLAUDIA. A Hybrid Approach for Seg-
menting and Fitting Solid Primitives to 3D Point Clouds. VISI-
GRAPP (1: GRAPP). 2020, pp. 38–48.

GAL, RAN; COHEN-OR, DANIEL. Salient geometric features for partial
shape matching and similarity. ACM Transactions on Graphics
(TOG) 25.1 (2006), pp. 130–150.

GIELINGH, WIM. An assessment of the current state of product data
technologies. Computer-Aided Design 40.7 (2008), pp. 750–759.

GOMEZ-DONOSO, FRANCISCO; GARCIA-GARCIA, ALBERTO;
GARCIA-RODRIGUEZ, J; ORTS-ESCOLANO, SERGIO; CAZORLA,
MIGUEL. Lonchanet: A sliced-based cnn architecture for real-
time 3d object recognition. 2017 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2017, pp. 412–418.

GRANGER, SÉBASTIEN; PENNEC, XAVIER. Multi-scale EM-ICP: A
fast and robust approach for surface registration. European
Conference on Computer Vision. Springer. 2002, pp. 418–432.

HAMERLY, GREG; ELKAN, CHARLES. Learning the k in k-means.
Advances in neural information processing systems 16 (2003).

HANOCKA, RANA; FISH, NOA; WANG, ZHENHUA; GIRYES, RAJA;
FLEISHMAN, SHACHAR; COHEN-OR, DANIEL. Alignet: Partial-
shape agnostic alignment via unsupervised learning. ACM Trans-
actions on Graphics (TOG) 38.1 (2018), pp. 1–14.

HANOCKA, RANA; METZER, GAL; GIRYES, RAJA; COHEN-OR,
DANIEL. Point2Mesh: a self-prior for deformable meshes. arXiv
preprint arXiv:2005.11084 (2020).

HARDIN, B; MCCOOL, D. BIM and construction management: proven
tools, methods, and workflows. 2015.

HASSANI, KAVEH; HALEY, MIKE. Unsupervised multi-task feature
learning on point clouds. Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 8160–8171.

HEGDE, SINDHU; GANGISETTY, SHANKAR. PIG-Net: Inception
based deep learning architecture for 3D point cloud segmen-
tation. Computers & Graphics 95 (2021), pp. 13–22.

HERMOSILLA, PEDRO; RITSCHEL, TOBIAS; VÁZQUEZ, PERE-PAU;
VINACUA, ÀLVAR; ROPINSKI, TIMO. Monte carlo convolution
for learning on non-uniformly sampled point clouds. ACM Trans-
actions on Graphics (TOG) 37.6 (2018), pp. 1–12.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Bibliography 74

HORN, BERTHOLD KP. Closed-form solution of absolute orientation
using unit quaternions. Josa a 4.4 (1987), pp. 629–642.

IOFFE, SERGEY; SZEGEDY, CHRISTIAN. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. International conference on machine learning. PMLR. 2015,
pp. 448–456.

JIANG, JINCEN; LU, XUEQUAN; OUYANG, WANLI; WANG, MEILI.
Unsupervised representation learning for 3d point cloud data.
arXiv preprint arXiv:2110.06632 (2021).

KANATANI, KEN-ICHI. Analysis of 3-D rotation fitting. IEEE Transac-
tions on pattern analysis and machine intelligence 16.5 (1994), pp. 543–
549.

KASS, ROBERT E; WASSERMAN, LARRY. A reference Bayesian test
for nested hypotheses and its relationship to the Schwarz cri-
terion. Journal of the american statistical association 90.431 (1995),
pp. 928–934.

KIM, BYUNG CHUL; JEON, YOUNGJUN; PARK, SANGJIN; TEIJGELER,
HANS; LEAL, DAVID; MUN, DUHWAN. Toward standardized ex-
change of plant 3D CAD models using ISO 15926. Computer-
Aided Design 83 (2017), pp. 80–95.

KINGMA, DIEDERIK P; BA, JIMMY. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

KRITZINGER, WERNER; KARNER, MATTHIAS; TRAAR, GEORG;
HENJES, JAN; SIHN, WILFRIED. Digital Twin in manufactur-
ing: A categorical literature review and classification. IFAC-
PapersOnLine 51.11 (2018), pp. 1016–1022.

KUROBE, AKIYOSHI; SEKIKAWA, YUSUKE; ISHIKAWA, KOHTA;
SAITO, HIDEO. Corsnet: 3d point cloud registration by deep
neural network. IEEE Robotics and Automation Letters 5.3 (2020),
pp. 3960–3966.

LI, LINGXIAO; SUNG, MINHYUK; DUBROVINA, ANASTASIA; YI, LI;
GUIBAS, LEONIDAS J. Supervised fitting of geometric primitives
to 3d point clouds. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 2652–2660.

LUCAS, BRUCE D; KANADE, TAKEO, et al. An iterative image regis-
tration technique with an application to stereo vision. Vancouver,
British Columbia. 1981.

MARTINET, AURÉLIEN; SOLER, CYRIL; HOLZSCHUCH, NICOLAS; SIL-
LION, FRANÇOIS X. Accurate detection of symmetries in 3d

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Bibliography 75

shapes. ACM Transactions on Graphics (TOG) 25.2 (2006), pp. 439–
464.

MITRA, NILOY J; GUIBAS, LEONIDAS J; PAULY, MARK. Partial and
approximate symmetry detection for 3d geometry. ACM Trans-
actions on Graphics (TOG) 25.3 (2006), pp. 560–568.

NGUYEN, TRUNG; PHAM, QUANG-HIEU; LE, TAM; PHAM, TUNG;
HO, NHAT; HUA, BINH-SON. Point-set distances for learning
representations of 3d point clouds. Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 10478–10487.

OSADA, ROBERT; FUNKHOUSER, THOMAS; CHAZELLE, BERNARD;
DOBKIN, DAVID. Shape distributions. ACM Transactions on Graph-
ics (TOG) 21.4 (2002), pp. 807–832.

PAULY, MARK; MITRA, NILOY J; WALLNER, JOHANNES;
POTTMANN, HELMUT; GUIBAS, LEONIDAS J. Discovering struc-
tural regularity in 3D geometry. ACM SIGGRAPH 2008 papers.
2008, pp. 1–11.

PELLEG, DAN; MOORE, ANDREW W, et al. X-means: Extending k-
means with efficient estimation of the number of clusters. Icml.
Vol. 1. 2000, pp. 727–734.

PHARR, MATT; FERNANDO, RANDIMA. Gpu gems 2: programming
techniques for high-performance graphics and general-purpose
computation. Addison-Wesley Professional, 2005.

PRIM, ROBERT CLAY. Shortest connection networks and some gen-
eralizations. The Bell System Technical Journal 36.6 (1957), pp. 1389–
1401.

PROCESS INDUSTRIES STEP CONSORTIUM. STEP In The Process
Industries: Process Plant Engineering Activity Model. 1994.

QI, CHARLES R; SU, HAO; MO, KAICHUN; GUIBAS, LEONIDAS J.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 652–660.

QI, CHARLES RUIZHONGTAI; YI, LI; SU, HAO; GUIBAS, LEONIDAS J.
Pointnet++: Deep hierarchical feature learning on point sets
in a metric space. Advances in neural information processing systems.
2017, pp. 5099–5108.

QI, QINGLIN; TAO, FEI; ZUO, YING; ZHAO, DONGMING. Digital twin
service towards smart manufacturing. Procedia Cirp 72 (2018),
pp. 237–242.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Bibliography 76

RAO, YONGMING; LU, JIWEN; ZHOU, JIE. Global-local bidirectional
reasoning for unsupervised representation learning of 3d point
clouds. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 5376–5385.

RAVANBAKHSH, SIAMAK; SCHNEIDER, JEFF; POCZOS, BARNABAS.
Deep learning with sets and point clouds. arXiv preprint
arXiv:1611.04500 (2016).

REMELLI, EDOARDO; BAQUE, PIERRE; FUA, PASCAL. Neuralsam-
pler: Euclidean point cloud auto-encoder and sampler. arXiv
preprint arXiv:1901.09394 (2019).

RUMELHART, DAVID E; HINTON, GEOFFREY E; WILLIAMS, RONALD
J. Learning internal representations by error propagation. Tech.
rep. California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

SANTOS, PAULO IVSON NETTO; CELES FILHO, WALDEMAR. In-
stanced rendering of massive cad models using shape matching.
2014 27th SIBGRAPI Conference on Graphics, Patterns and Images.
IEEE. 2014, pp. 335–342.

SCHNABEL, RUWEN; WAHL, ROLAND; KLEIN, REINHARD. Efficient
RANSAC for point-cloud shape detection. Computer graphics
forum. Vol. 26. 2. Wiley Online Library. 2007, pp. 214–226.

SHAO, GUODONG; HELU, MONEER. Framework for a digital twin in
manufacturing: Scope and requirements. Manufacturing Letters 24
(2020), pp. 105–107.

SHARP, GREGORY C; LEE, SANG W; WEHE, DAVID K. ICP registra-
tion using invariant features. IEEE Transactions on Pattern Analysis
and Machine Intelligence 24.1 (2002), pp. 90–102.

SILVA, LUCIANO; BELLON, OLGA REGINA PEREIRA; BOYER, KIM
L. Precision range image registration using a robust surface
interpenetration measure and enhanced genetic algorithms.
IEEE transactions on pattern analysis and machine intelligence 27.5
(2005), pp. 762–776.

SONG, CHUNFENG; LIU, FENG; HUANG, YONGZHEN; WANG, LIANG;
TAN, TIENIU. Auto-encoder based data clustering. Iberoamerican
congress on pattern recognition. Springer. 2013, pp. 117–124.

SOUZA MOREIRA, ANDRÉ de. Engenharia reversa em modelos cad
utilizando descritores de forma e maquina de vetores de suporte.
PhD thesis. MA thesis. PUC–Rio, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Bibliography 77

TE, GUSI; HU, WEI; ZHENG, AMIN; GUO, ZONGMING. Rgcnn: Regu-
larized graph cnn for point cloud segmentation. Proceedings of the
26th ACM international conference on Multimedia. 2018, pp. 746–754.

UMEYAMA, SHINJI. Least-squares estimation of transformation pa-
rameters between two point patterns. IEEE Transactions on Pat-
tern Analysis & Machine Intelligence 13.04 (1991), pp. 376–380.

WANG, YECHAO; CAO, JINMING; LI, YANGYAN; TU, CHANGHE.
APM: Adaptive permutation module for point cloud classifi-
cation. Computers & Graphics 97 (2021), pp. 217–224.

WANG, YUE; SOLOMON, JUSTIN M. Deep closest point: Learn-
ing representations for point cloud registration. Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 3523–3532.

WANG, ZHEN; ZHANG, LIQIANG; ZHANG, LIANG; LI, ROUJING;
ZHENG, YIBO; ZHU, ZIDONG. A deep neural network with spa-
tial pooling (DNNSP) for 3-D point cloud classification. IEEE
Transactions on Geoscience and Remote Sensing 56.8 (2018), pp. 4594–
4604.

WOLD, SVANTE; ESBENSEN, KIM; GELADI, PAUL. Principal compo-
nent analysis. Chemometrics and intelligent laboratory systems 2.1-3
(1987), pp. 37–52.

WU, BICHEN; ZHOU, XUANYU; ZHAO, SICHENG; YUE, XIANGYU;
KEUTZER, KURT. Squeezesegv2: Improved model structure and
unsupervised domain adaptation for road-object segmentation
from a lidar point cloud. 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 4376–4382.

YEW, ZI JIAN; LEE, GIM HEE. 3dfeat-net: Weakly supervised local 3d
features for point cloud registration. Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 607–623.

ZAMORSKI, MACIEJ; ZIEBA, MACIEJ; KLUKOWSKI, PIOTR; NOWAK,
RAFAŁ; KURACH, KAROL; STOKOWIEC, WOJCIECH; TRZ-
CIŃSKI, TOMASZ. Adversarial autoencoders for compact rep-
resentations of 3D point clouds. Computer Vision and Image
Understanding 193 (2020), p. 102921.

ZHA, HONGBIN; IKUTA, MAKOTO; HASEGAWA, TSUTOMU. Registra-
tion of range images with different scanning resolutions. Smc
2000 conference proceedings. 2000 ieee international conference on sys-
tems, man and cybernetics.’cybernetics evolving to systems, humans, or-

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

Bibliography 78

ganizations, and their complex interactions’(cat. no. 0. Vol. 2. IEEE.
2000, pp. 1495–1500.

ZINSSER, TIMO; SCHMIDT, JOCHEN; NIEMANN, HEINRICH. Point
set registration with integrated scale estimation. International
conference on pattern recognition and image processing. 2005, pp. 116–
119.

DBD
PUC-Rio - Certificação Digital Nº 1721470/CA

	Deep-Learning-Based Shape Matching Framework on 3D CAD Models
	Resumo
	Table of contents
	Introduction
	Objectives
	Contributions
	Document Organization

	Related Work
	Geometric Approaches
	Deep Learning-Based Approaches

	Shape Matching Background
	Deep Learning on Point Sets
	Autoencoders
	Clustering
	K-Means
	HDBSCAN

	Supervised Shape Instance Matching Framework
	Preprocessing
	Instance Registration
	Experiments
	Training the PointNet++
	Results
	Instance Registration Results
	Rendering Performance
	Results Using Another CAD model

	Discussion

	Self-Supervised Shape Instance Matching Framework
	Experiments
	Training the Autoencoder
	Results
	Results in the labeled dataset
	Results in the unlabeled dataset
	Rendering performance

	Discussion

	Conclusions
	Future Work

	Bibliography

